منابع
استراوس، آنسلم، و کوربین، جولیت (1390). اصول روش تحقیق کیفی: نظریه مبنایی، رویهها و شیوهها (بیوک محمدی، مترجم). تهران: پژوهشگاه علوم انسانی و مطالعات فرهنگی. (اثر اصلی منتشر شده در سال 1990)
بهشتی، سید صمد (1395). تحلیل دادههای کیفی با نرمافزار Maxqda (سید شاهرخ موسویان، ویراستار). تهران: روششناسان.
حریری، نجلا (1385). اصول و روشهای پژوهش کیفی. تهران: دانشگاه آزاد اسلامی واحد علوم و تحقیقات.
کوهن، تامس (1393). ساختار انقلابهای علمی (سعید زیباکلام، مترجم). تهران: سمت. (اثر اصلی منتشر شده در سال 1962)
References
Abdullah, D. M., & Chali, Y. )2020(. Towards generating query to perform query focused abstractive summarization using pre-trained model. In
Proceedings of the 13th International conference on natural language generation (pp. 80-85). URL:
https://aclanthology.org/2020.inlg-1.11/
Alambo, A., Lohstroh, C., Madaus, E., Padhee, S., Foster, B., Banerjee, T., Thirunarayan, k., & Raymer, M. (2020, December). Topic-centric unsupervised multi-document summarization of scientific and news articles
. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 591-596). URL:
https://arxiv.org/abs/2011.08072
Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). Text summarization techniques: a brief survey. arXiv preprint
. URL:
https://arxiv.org/abs/1707.02268
Andhale, N., & Bewoor, L. A. (2016).
An overview of text summarization techniques. In 2016 international conference on computing communication control and automation (ICCUBEA), Pune, India, 2016. URL:
https://ieeexplore.ieee.org/document/7860024
Arthur, M. P., Rameshchandra, T. J., & Dhanabalachandran, M. (2023). Abstractive Summarization Based Question-Answer System for Structural Information. In
International Conference on Applications of Natural Language to Information Systems (pp. 416-427). Cham: Springer Nature Switzerland. URL:
https://doi.org/10.1007/978-3-031-35320-8_30
Baumel, T., Eyal, M., & Elhadad, M. (2018). Query focused abstractive summarization: Incorporating query relevance, multi-document coverage, and summary length constraints into seq2seq models. arXiv preprint. URL:
https://arxiv.org/abs/1801.07704
Beheshti, S. S. (2016). Analysis of Qualitative Data with Maxqda Software (S. S. Mousavian, Ed). Tehran: Ravesh shenasan. (Original work published ....) [In Persian]
Deng, Y., Zhang, W., Xu, W., Shen, Y., & Lam, W. (2023). Nonfactoid question answering as query-focused summarization with graph-enhanced multi hop inference.
IEEE Transactions on Neural Networks and Learning Systems, 35 (8), 1-14. URL:
https://ieeexplore.ieee.org/document/10083216
Esteva, A., Kale, A., Paulus, R., Hashimoto, K., Yin, W., Radev, D., & Socher, R. (2021). COVID-19 information retrieval with deep-learning based semantic search, question answering, and abstractive summarization.
NPJ digital medicine, 4(1), 68. URL:
https://doi.org/10.1038/s41746-021-00437-0
Gavalan, H. S., Rastgoo, M. N., & Nakisa, B. (2024). A BERT-Based Summarization approach for depression detection. arXiv preprint. URL:
https://arxiv.org/pdf/2409.08483
Giarelis, N., Mastrokostas, C., & Karacapilidis, N. (2023). Abstractive vs. extractive summarization: An experimental review.
Applied Sciences, 13(13), 7620. URL:
https://doi.org/10.3390/app13137620
Girthana, K., & Swamynathan, S. (2019). Query oriented extractive-abstractive summarization system (QEASS). In
Proceedings of the ACM India Joint International Conference on Data Science and Management of Data (pp. 301-305). URL:
https://doi.org/10.1145/3297001.3297046
Hariri, N. (2002). Principles and Methods of Qualitative Research. Tehran: Islamic Azad University, Science and Research Branch [In Persian]
Hasselqvist, J., Helmertz, N., & Kågebäck, M. (2017). Query-based abstractive summarization using neural networks. arXiv preprint. URL:
https://arxiv.org/abs/1712.06100
Inoue, N., Trivedi, H., Sinha, S., Balasubramanian, N., & Inui, K. (2021). Summarize-then-answer: Generating concise explanations for multi-hop reading comprehension. arXiv preprint. URL:
https://arxiv.org/abs/2109.06853
Israel, Q., Han, H., & Song, I. Y. (2015). Semantic analysis for focused multi-document summarization (fMDS) of text. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing (pp. 339-344). URL:
https://doi.org/10.1145/2695664.2695672
Kuhn, T. (2014). The Structure of Scientific Revolutions (S. Zibakalam, Trans.). Tehran: Samt. (Original work published 1962) [In Persian]
Kumaravel, G., & Sankaranarayanan, S. (2021). PQPS: Prior‐Art Query‐Based Patent Summarizer Using RBM and Bi‐LSTM.
Mobile Information Systems, 2021(1), 2497770. URL:
https://doi.org/10.1155/2021/2497770
Laskar, M. T. R., Hoque, E., & Huang, J. (2020). Query focused abstractive summarization via incorporating query relevance and transfer learning with transformer models. In
Advances in Artificial Intelligence: 33rd Canadian Conference on Artificial Intelligence, Canadian AI 2020, Ottawa, ON, Canada, May 13–15, 2020, Proceedings. 33 (pp. 342-348). Springer International Publishing. URL:
https://link.springer.com/chapter/10.1007/978-3-030-47358-7_35
Laskar, M. T. R., Rahman, M., Jahan, I., Hoque, E., & Huang, J. (2023a). CQSumDP: a ChatGPT-annotated resource for query-focused abstractive summarization based on debatepedia. arXiv preprint. URL:
https://arxiv.org/abs/2305.06147
Laskar, M. T. R., Rahman, M., Jahan, I., Hoque, E., & Huang, J. (2023b). Can large language models fix data annotation errors? an empirical study using debatepedia for query-focused text summarization. In
Findings of the Association for Computational Linguistics: EMNLP. 2023 (pp. 10245-10255). URL:
https://aclanthology.org/2023.findings-emnlp.686.pdf
Laskar, M., Hoque, E., & Huang, J. (2021). Domain Adaptation with Pre-trained Transformers for Query Focused Abstractive Text Summarization. arXiv e-prints. URL:
https://arxiv.org/abs/2112.11670
Li, B., Yang, P., Zhao, H., Zhang, P., & Liu, Z. (2023). Hierarchical sliding inference generator for question-driven abstractive answer summarization.
ACM Transactions on Information Systems, 41(1), 1-27. URL:
https://doi.org/10.1145/3511891
Mehdad, Y., Carenini, G., & Ng, R. (2014). Abstractive summarization of spoken and written conversations based on phrasal queries.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1220-1230). URL:
https://aclanthology.org/P14-1115
Mridha, M. F., Lima, A. A., Nur, K., Das, S. C., Hasan, M., & Kabir, M. M. (2021). A survey of automatic text summarization: Progress, process and challenges.
IEEE Access, 9, 156043-156070. URL:
https://ieeexplore.ieee.org/abstract/document/9623462/
Nema, P., Khapra, M., Laha, A., & Ravindran, B. (2017)
. Diversity driven attention model for query-based abstractive summarization. arXiv preprint
. URL:
https://aclanthology.org/P17-1098
Nimavat, K., & Joshiara, H. A. (2017). query-based summarization methods for conversational agents: an overview.
International Journal of Advanced Research in Computer Science, 8(8), 448-453. URL:
https://www.proquest.com/docview/1953785769
Nishida, K., Saito, I., Nishida, K., Shinoda, K., Otsuka, A., Asano, H., & Tomita, J. (2019). Multi-style generative reading comprehension. arXiv preprint. URL:
https://arxiv.org/abs/1901.02262
Pasunuru, R., Celikyilmaz, A., Galley, M., Xiong, C., Zhang, Y., Bansal, M., & Gao, J. (2021). Data augmentation for abstractive query-focused multi-document summarization. In
Proceedings of the AAAI Conference on Artificial Intelligence, 35 (15), 13666-13674. URL:
https://arxiv.org/abs/2103.01863
Polash, M. M. H. (2019).
Query-focused abstractive summarization using sequence-to-sequence and transformer models [Doctoral dissertation, University of Lethbridge]. URL:
https://hdl.handle.net/10133/5665
Ritharson, P. I., Juliet, D. S., Anitha, J., & Pandian, S. I. A. (2023
). Multi-Document Summarization Made Easy: An Abstractive Query-Focused System Using Web Scraping and Transformer Models. In 2023 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, 2023. URL:
https://ieeexplore.ieee.org/document/10205946
Roy, P., & Kundu, S. (2023). Review on Query-focused Multi-document Summarization (QMDS) with Comparative Analysis.
ACM Computing Surveys, 56(1), 1-38. URL:
https://doi.org/10.1145/3597299
ShafieiBavani, E., Ebrahimi, M., Wong, R., & Chen, F. (2016). A query-based summarization service from multiple news sources. In
2016 IEEE International Conference on Services Computing (SCC) (pp. 42-49). IEEE. URL:
https://ieeexplore.ieee.org/document/7557434
Strauss, A., & Corbin, J. (2011). Basics of qualitative research :grounded theory procedures and techniques (B. Mohammadi, Trans.). Tehran: Humanities and Cultural Studies Research Institute. (Original work published 1990) [In Persian]
Su, D., Xu, Y., Yu, T., Siddique, F. B., Barezi, E. J., & Fung, P. (2020). CAiRE-COVID: A question answering and query-focused multi-document summarization system for COVID-19 scholarly information management. arXiv preprint. URL:
https://aclanthology.org/2020.nlpcovid19-2.14/
Su, D., Yu, T., & Fung, P. (2021). Improve query focused abstractive summarization by incorporating answer relevance. arXiv preprint. URL:
https://arxiv.org/abs/2105.12969
Suleiman, D., & Awajan, A. (2020). Deep learning based abstractive text summarization: approaches, datasets, evaluation measures, and challenges.
Mathematical problems in engineering, 2020, 1-29. URL:
https://doi.org/10.1155/2020/9365340
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need.
31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. (pp. 6000-6010). URL:
https://dl.acm.org/doi/10.5555/3295222.3295349
Vig, J., Fabbri, A. R., Kryściński, W., Wu, C. S., & Liu, W. (2021). Exploring neural models for query-focused summarization. arXiv preprint. URL:
https://arxiv.org/abs/2112.07637
Wang, X., Wang, J., Xu, B., Lin, H., Zhang, B., & Yang, Z. (2022). Exploiting Intersentence Information for Better Question-Driven Abstractive Summarization: Algorithm Development and Validation.
JMIR Medical Informatics, 10(8), e38052. URL:
https://medinform.jmir.org/2022/8/e38052
Xu, Y., & Lapata, M. (2021a). Generating query focused summaries from query-free resources.
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 6096–6109. URL:
https://aclanthology.org/2021.acl-long.475
Yadav, D., Desai, J., & Yadav, A. K. (2022). Automatic Text Summarization Methods: A Comprehensive Review. arXiv preprint. URL:
https://arxiv.org/abs/2204.01849
ارسال نظر درباره این مقاله