شناسایی و دسته‌بندی فرایندها و مؤلفه‌های مدیریت دانش زنجیرۀ تأمین کشاورزی مبتنی بر فناوری بلاکچین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای، گروه علم اطلاعات و دانش‌شناسی، واحد علوم تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد گروه علم اطلاعات و دانش‌شناسی، واحد علوم تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار گروه علوم کامپیوتر، دانشگاه مالک اشتر، تهران، ایران

10.30484/nastinfo.2025.3664.2302

چکیده

هدف: با توجه به اهمیت و گسترش دنیای دیجیتال و کارایی روزافزون فنّاوری، این پژوهش به شناسایی شاخص‌های مؤثر فناوری بلاکچین در مدیریت دانش موجود در زنجیرۀ تأمین محصولات زراعی کشاورزی پرداخته است.
روش: این پژوهش ازنظر ماهیت کیفی، ازلحاظ هدف کاربردی و ازلحاظ شیوۀ گردآوری داده‌ها، توصیفی-پیمایشی است. متخصصان فناوری بلاکچین، اساتید دانشگاه در رشتۀ بلاکچین و پژوهشگرانی که در حوزۀ استفاده از فناوری بلاکچین در کشاورزی مقالۀ علمی دارند، جامعۀ آماری این پژوهش را تشکیل می‌­دهند. در مرحلۀ اول تعداد 124 شاخص­ که قبلاً از مقالات علمی مرتبط به کمک روش فراترکیب جمع‌­آوری و استخراج شده بود، در مصاحبه با گروه خبرگان تعداد 31 شاخص حذف یا ادغام شده و 93 شاخص باقی ماند. همچنین بخش­های مدل مدیریت دانش نیومن و کنراد استخراج و با شاخص­های بلاکچین مطابقت داده شد؛ و مورد تأیید خبرگان قرار گرفت. در مرحلۀ بعد، از روش دلفی استفاده شد. تعداد خبرگان پنل دلفی 11 نفر بودند که در دو مرحله با این طرح همکاری کردند.
یافته‌ها: ابتدا با استفاده از مقالات علمی مورد مطالعه، مشکلات فعلی موجود در زنجیرۀ سنّتی استخراج و دسته­‌بندی شد که شامل تعداد 58 شاخص از معایب و مشکلات زنجیرۀ سنتی تأمین محصولات کشاورزی بود. از این تعداد، 14 مؤلفه مربوط به منشأ محصولات کشاورزی، 38 مؤلفه مربوط به توزیع محصولات کشاورزی و 6 مؤلفه به ایمنی و کیفیت مواد غذایی مربوط می‌شد. در مرحلۀ پنل دلفی از بین 93 شاخص استخراج‌شده، 9 شاخص حذف شد و 86 شاخص مؤثر باقی ماند. شاخص‌های فناوری بلاکچین در مدل مدیریت دانش نیومن و کنراد شامل 15 مؤلفه مربوط به خلق دانش، 22 مؤلفه مربوط به نگهداری دانش، 12 مؤلفه مربوط به انتقال دانش و 37 مؤلفه مربوط به به‌کارگیری دانش است. 
نتیجه‌گیری: طبق یافته‌های این پژوهش، زنجیرۀ سنتی تأمین محصولات کشاورزی دارای مشکلات و معایب بسیاری است و در مقابل طبق مدل مدیریت دانش نیومن و کنراد، می‌توان اثبات کرد که زنجیرۀ تأمین محصولات کشاورزی حاوی فناوری بلاکچین می‌تواند به دلیل امن و مطمئن‌بودنش یک بستر مناسب برای تولیدکنندگان، توزیع‌کنندگان، عمده‌فروشان، خرده‌فروشان و مشتریان به وجود بیاورد. این فناوری به دلیل داشتن مزایای بسیار می‌تواند تحولی عظیم در صنعت کشاورزی ایجاد کند. شناسایی و تحلیل مؤلفه‌ها و شاخص‌های فناوری بلاکچین در زنجیرۀ تأمین محصولات کشاورزی به درک عمیق‌تر ما در استفاده از این فناوری منجر می‌شود. به کمک این فناوری می‌توان دانش آشکار و نهان موجود در زنجیرۀ تأمین محصولات کشاورزی را سازمان‌دهی و بهره‌برداری کرد. بدین ترتیب، مراحل خلق، نگهداری، انتقال و به‌کارگیری دانش با ایمنی بیشتر و مفیدتر انجام خواهد شد. 
 

کلیدواژه‌ها


عنوان مقاله [English]

Identifying and categorizing the processes and components of agricultural supply chain knowledge management based on blockchain technology

نویسندگان [English]

  • hanieh Sadat fattahzadeh 1
  • Nadjla Hariri 2
  • Shahab Behjati 3
1 Ph.D Student, Department of knowledge and information sciences, Tehran Research Sciences Branch, Islamic Azad University, Tehran, Iran
2 Professor, Department of knowledge and information sciences, Science and research branch, Islamic Azad University, Tehran, Iran
3 Associate Professor, Department of Computer Science, Malik Ashtar University, Tehran, Iran
چکیده [English]

Purpose: Given the importance and expansion of the digital world and the increasing effectiveness of technology, this research identifies the key indicators of blockchain technology in the knowledge management of the agricultural supply chain.
Method: This research is qualitative in nature, applied in purpose, and employs a descriptive and survey-based approach for data collection. The statistical population comprises blockchain technology experts, university professors specializing in blockchain, and researchers with scientific articles on blockchain applications in agriculture. Initially, 124 indicators were collected and extracted from related scientific articles using the meta-synthesis method. In interviews with experts, 31 indicators were eliminated or merged, leaving 93 indicators. Additionally, components of Newman and Conrad’s knowledge management model were extracted, aligned with blockchain indicators, and validated by experts. Subsequently, the Delphi method was employed, with a panel of 11 experts participating in two stages.
Findings: Initially, the current problems in the traditional supply chain were extracted and categorized using studied scientific articles, identifying 58 indicators of its disadvantages and issues. Of these, 14 components were related to the origin of agricultural products, 38 to their distribution, and 6 to food safety and quality. In the Delphi panel stage, 9 of the 93 extracted indicators were removed, leaving 86 effective indicators. Blockchain technology indicators in Newman and Conrad’s knowledge management model include 15 components related to knowledge creation, 22 to knowledge maintenance, 12 to knowledge transfer, and 37 to knowledge application.
Conclusion: According to the research findings, the traditional agricultural supply chain faces numerous problems and shortcomings. In contrast, based on Newman and Conrad’s knowledge management model, it can be demonstrated that a blockchain-based agricultural supply chain, due to its security and reliability, provides a robust platform for producers, distributors, wholesalers, retailers, and consumers. This technology, with its numerous advantages, can revolutionize the agricultural industry. Identifying and analyzing blockchain technology components and indicators in the agricultural supply chain enhances our understanding of its application. Through this technology, explicit and tacit knowledge within the agricultural supply chain can be organized and utilized, enabling the stages of knowledge creation, maintenance, transfer, and application to be conducted with greater security and efficiency.

کلیدواژه‌ها [English]

  • : Knowledge Management
  • Newman and Conrad’s Model
  • Delphi
  • Blockchain
  • Agricultural Supply Chain
References
Antonucci, F., Figorilli, S., Costa, C., Pallottino, F., Raso, L., & Menesatti, P. (2019). A Review on blockchain applications in the agri‐food sector. Journal of the Science of Food and Agriculture. DOI:10.1002/jsfa.9912
Awan, S. H., Nawaz, A., Ahmed, S., Khattak, H. A., Zaman, K., & Najam, Z. (2020, August). Blockchain based Smart model for agricultural food supply chain. In 2020 International Conference on UK-China Emerging Technologies (UCET) (pp. 1-5). IEEE. DOI:10.1109/UCET51115.2020.9205477
Bhat, S. A., Huang, N. F., Sofi, I. B., & Sultan, M. (2021). Agriculture-food supply chain management based on blockchain and IoT: a narrative on enterprise blockchain interoperability. Agriculture, 12(1), 40. DOI:10.3390/agriculture12010040
BIKORO, D. M. A. (2022). Towards a Blockchain-Based Smart Farm Agricultural Revolution in Sub-Saharan Africa. IFAC-PapersOnLine, 55(10), 299-304. DOI:10.1016/j.ifacol.2022.09.404
Bingzhang, L., & Zirianov, V. (2021). Blockchain in agricultural supply chain management. In E3S Web of Conferences (Vol. 273, p. 08029). EDP Sciences. DOI:10.1051/e3sconf/202127308029
Borah, M. D., Naik, V. B., Patgiri, R., Bhargav, A., Phukan, B., & Basani, S. G. (2020). Supply chain management in agriculture using blockchain and IoT. Studies in Big Data. Chapter: In Advanced applications of blockchain technology, 227-242. Web of Science. DOI: 10.1007/978-981-13-8775-3_11
Cao, Y., Yi, C., Wan, G., Hu, H., Li, Q., & Wang, S. (2022). An analysis on the role of blockchain-based platforms in agricultural supply chains. Transportation Research Part E: Logistics and Transportation Review, 163, 102731. DOI:10.1016/j.tre.2022.102731
Chuntang, Y. U., Yongzhao, Z. H. A. N., & Zhiyuan, L. I. (2020, November). Using blockchain and smart contract for traceability in agricultural products supply chain. In 2020 International Conference on Internet of Things and Intelligent Applications (ITIA) (pp. 1-5). IEEE. DOI:10.1109/ITIA50152.2020.9312315
Dos Santos, R. B., Torrisi, N. M., & Pantoni, R. P. (2021). Third party certification of agri-food supply chain using smart contracts and blockchain tokens. Sensors, 21(16), 5307. DOI:10.3390/s21165307
Fattahzadeh, H., Hariri, N., &  Behjati, Sh. (2024). Iran Agricultural Research, 42(1),102 -120.
DOI:10.22099/IAR.2024.51044.1630
Hao, J., Sun, Y., & Luo, H. (2018). A safe and efficient storage scheme based on blockchain and IPFS for agricultural products tracking. Journal of Computers, 29 (6), 158-167.
 DOI:10.3966/199115992018122906015
Hasan, I., Habib, M. M., Mohamed, Z., & Tewari, V. (2023). Integrated Agri-Food Supply Chain Model: An Application of IoT and Blockchain. American Journal of Industrial and Business Management, 13(2), 29-45. DOI:10.4236/ajibm.2023.132003 
Hegde, B., Ravishankar, B., & Appaiah, M. (2020, February). Agricultural supply chain management using blockchain technology. In 2020 International Conference on Mainstreaming Block Chain Implementation (ICOMBI) (pp. 1-4). IEEE. DOI:10.23919/ICOMBI48604.2020.9203259
Hua, J., Wang, X., Kang, M., Wang, H., & Wang, F. Y. (2018, June). Blockchain based provenance for agricultural products: A distributed platform with duplicated and shared bookkeeping. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 97-101). IEEE. DOI:10.1109/IVS.2018.8500647
Hu, S., Huang, S., Huang, J., & Su, J. (2021). Blockchain and edge computing technology enabling organic agricultural supply chain: A framework solution to trust crisis. Computers & Industrial Engineering153, 107079. DOI:10.1016/j.cie.2020.107079
Jahanbin, p., Wingreen, S., & Sharma, R. (2019). A blockchain traceability information system for trust improvement in agricultural supply chain. In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm & Uppsala, Sweden, June 8-14, 2019. ISBN 978-1-7336325-0-8 Research-in-Progress Papers. https://aisel.aisnet.org/ecis2019_rip/10/
Khan, H. H., Malik, M. N., Konečná, Z., Chofreh, A. G., Goni, F. A., & Klemeš, J. J. (2022). Blockchain technology for agricultural supply chains during the COVID-19 pandemic: Benefits and cleaner solutions. Journal of Cleaner Production, 347, 131268. DOI:10.1016/j.jclepro.2022.131268
Kamilaris, A., Cole, I. R., & Prenafeta-Boldú, F. X. (2021). Blockchain in agriculture. In Food Technology Disruptions (pp. 247-284). Academic Press. DOI:10.1016/B978-0-12-821470-1.00003-3
Kiruba, K., Hemalatha, P., Manikandan, J., Madhin, M., & Mohan, R. S. (2021, July). Revolutionizing secure commercialization in agriculture using blockchain technology. In 2021 International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1-6). IEEE.
Köhler, S., Bager, S., & Pizzol, M. (2022). Sustainability standards and blockchain in agro-food supply chains: Synergies and conflicts. Technological Forecasting and Social Change, 185, 122094.
Kumarathunga, M., Calheiros, R. N., & Ginige, A. (2022). Smart Agricultural Futures Market: Blockchain Technology as a Trust Enabler between Smallholder Farmers and Buyers. Sustainability, 14(5), 2916.
LB, K. (2022). Survey on the Applications of Blockchain in Agriculture. Agriculture, 12(9), 1333.
Li, J., & Wang, X. (2018, May). Research on the application of blockchain in the traceability system of agricultural products. In 2018 2nd IEEE advanced information management, communicates, electronic and automation control conference (IMCEC) (pp. 2637-2640). IEEE. DOI:10.1109/IMCEC.2018.8469456
Li, X., & Huang, D. (2020). Research on value integration mode of agricultural E-commerce industry chain based on internet of things and blockchain technology. Wireless Communications and Mobile Computing, 2020. DOI:10.1155/2020/8889148
Lv, G., Song, C., Xu, P., Qi, Z., Song, H., & Liu, Y. (2023). Blockchain-Based Traceability for Agricultural Products: A Systematic Literature Review. Agriculture, 13(9), 1757. DOI:10.3390/agriculture13091757
Mangla, S. K., Kazançoğlu, Y., Yıldızbaşı, A., Öztürk, C., & Çalık, A. (2022). A conceptual framework for blockchain‐based sustainable supply chain and evaluating implementation barriers: A case of the tea supply chain. Business Strategy and the Environment, 31(8), 3693-3716.  DOI:10.1002/bse.3027
Menon, S., & Jain, K. (2021). Blockchain technology for transparency in agri-food supply chain: Use cases, limitations, and future directions. IEEE Transactions on Engineering Management.
Mukherjee, A. A., Singh, R. K., Mishra, R., & Bag, S. (2021). Application of blockchain technology for sustainability development in agricultural supply chain: justification framework. Operations Management Research, 1-16. DOI:10.1007/s12063-021-00180-5
Newman, B. D., & Conrad, K. W. (2000, October). A Framework for Characterizing Knowledge Management Methods, Practices, and Technologies. In PAKM.
Ning, X., Ramirez, R., & Khuntia, J. (2021). Blockchain-enabled government efficiency and impartiality: using blockchain for targeted poverty alleviation in a city in China. Information Technology for Development, 27(3), 599-616.  DOI:10.1080/02681102.2021.1925619
Osmanoglu, M., Tugrul, B., Dogantuna, T., & Bostanci, E. (2020). An effective yield estimation system based on blockchain technology. IEEE Transactions on Engineering Management, 67(4), 1157-1168.
Pakseresht, A., Yavari, A., Kaliji, S. A., & Hakelius, K. (2023). The intersection of blockchain technology and circular economy in the agri-food sector. Sustainable Production and Consumption, 35, 260-274.
Patel, H., & Shrimali, B. (2023). AgriOnBlock: Secured data harvesting for agriculture sector using blockchain technology. ICT Express, 9(2), 150-159. DOI:10.1016/j.icte.2021.07.003
Pooja, S., & Mundada, M. R. (2020, October). Analysis of agricultural supply chain management for traceability of food products using blockchain-ethereum technology. In 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER) (pp. 127-132). IEEE. DOI:10.1109/DISCOVER50404.2020.9278029
Pufahl, L., Ohlsson, B., Weber, I., Harper, G., & Weston, E. (2021). Enabling financing in agricultural supply chains through blockchain. In Business Process Management Cases Vol. 2 (pp. 41-56). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-662-63047-1_4
Ren, W., Wan, X., & Gan, P. (2021). A double-blockchain solution for agricultural sampled data security in Internet of Things network. Future Generation Computer Systems, 117, 453-461.
Revathy, S., & Priya, S. S. (2020, September). Blockchain based producer-consumer model for farmers. In 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP) (pp. 1-5). IEEE. DOI: 10.1109/ICCCSP49186.2020.9315214
Rijanto, A. (2021), Business financing and blockchain technology adoption in agroindustry, Journal of Science and Technology Policy Management, 12(2), 215-235. DOI: 10.1108/JSTPM-03-2020-0065
Surasak, T., Wattanavichean, N., Preuksakarn, C., & Huang, S. C. (2019). Thai agriculture products traceability system using blockchain and internet of things. system, 14, 15. DOI:10.14569/IJACSA.2019.0100976
Tiscini, R., Testarmata, S., Ciaburri, M., & Ferrari, E. (2020). The blockchain as a sustainable business model innovation. Management Decision, 58(8), 1621-1642.  DOI:10.1108/MD-09-2019-1281
Umamaheswari, S., Sreeram, S., Kritika, N., & Prasanth, D. J. (2019, December). Biot: blockchain based IoT for agriculture. In 2019 11th International conference on advanced computing (ICoAC) (pp. 324-327). IEEE. DOI:10.1109/ICoAC48765.2019.246860
Vu, T. T., & Trinh, H. H. H. (2021). Blockchain technology for sustainable supply chains of agri-food in Vietnam: a SWOT analysis. VNUHCM Journal of Economics, Business and Law, 5(1), 1278-1289.
Wang, K., Yan, X., & Fu, K. (2020). Research on risk management of agricultural products supply chain based on blockchain technology. Open Journal of Business and Management, 8(6), 2493-2503.
Wang, Z., & Liu, P. (2019, July). Application of blockchain technology in agricultural product traceability system. In International Conference on Artificial Intelligence and Security (pp. 81-90). Springer, Cham.
DOI: 10.1007/978-3-030-24271-8_8
Xie, Z., Kong, H., & Wang, B. (2022). Dual-Chain Blockchain in Agricultural E-Commerce Information Traceability Considering the Viniar Algorithm. Scientific Programming, 2022. DOI:10.1155/2022/2604216
Xiong, H., Dalhaus, T., Wang, P., & Huang, J. (2020). Blockchain technology for agriculture: applications and rationale. frontiers in Blockchain3, 7.
Xu, J., Guo, S., Xie, D., & Yan, Y. (2020). Blockchain: A new safeguard for agri-foods. Artificial Intelligence in Agriculture, 4, 153-161.
Xu, Y., Wang, J., & Cao, K. (2023). Interaction between joining platform blockchain technology and channel encroachment for fresh agricultural product firms. International Transactions in Operational Research.  DOI:10.1111/itor.13266
Yadav, V. S., Singh, A. R., Raut, R. D., & Govindarajan, U. H. (2020). Blockchain technology adoption barriers in the Indian agricultural supply chain: an integrated approach. Resources, Conservation and Recycling, 161, 104877. DOI:10.1016/j.resconrec.2020.104877
Yang, H., Xiong, S., Frimpong, S. A., & Zhang, M. (2020). A consortium blockchain-based agricultural machinery scheduling system. Sensors, 20(9), 2643. DOI:10.3390/s20092643
Yang, X., Li, M., Yu, H., Wang, M., Xu, D., & Sun, C. (2021). A trusted blockchain-based traceability system for fruit and vegetable agricultural products. IEEE Access, 9, 36282-36293.
Yi, W., Huang, X., Yin, H., & Dai, S. (2021, May). Blockchain-based approach to achieve credible traceability of agricultural product transactions. In Journal of Physics: Conference Series, (Vol. 1864, No. 1, p. 012115). IOP Publishing. DOI:10.1088/1742-6596/1864/1/012115
Zeng, H., Dhiman, G., Sharma, A., Sharma, A., & Tselykh, A. (2023). An IoT and Blockchain‐based approach for the smart water management system in agriculture. Expert Systems, 40(4), e12892. DOI:10.1111/exsy.12892
Zhao, Y., Li, Q., Yi, W., & Xiong, H. (2023). Agricultural IoT Data Storage Optimization and Information Security Method Based on Blockchain. Agriculture, 13(2), 274.  DOI: 10.3390/agriculture13020274
CAPTCHA Image