Introduction to Music Information Retrieval: Background, Significance and Challenges

Document Type : Research َ Article

Authors

Abstract

Purpose: To study the significance of Music Information Retrieval (MIR), the differences between text and music storage and retrieval, MIR systems’ tasks and other challenges.
Methodology: Theoretical analysis.
Results: There are different search engines and databases for MIR, like LastFM, Pandora and Muggle. Similarity, classification, transcription, rhythm and pitch recognition and Query-by-Humming (QBH) are the main tasks of MIR systems.
Conclusion: Because of the differences between text and music qualities, text retrieval and MIR are different. To properly perform, each MIR system needs to consider: incorrect melody singing in QBH, difficulties of transcribing polyphonic music, genre’s dependency to several classes, the lack of clear sense among tags and similarities in various pieces of music

Keywords


بزرگ‌چمی، ویدا (1381). کتابخانه‌های موسیقی، در دایراه‌المعارف کتابداری و اطلاع‌رسانی، (ج 1، ص 1533-1535). تهران: سازمان اسناد و کتابخانه ملی ایران.
علیمحمدی، داریوش (1392). کاربرد متن و صوت در بازیابی حسی موسیقی: شبیه‌سازی یک پژوهش تجربی. مطالعات ملی کتابداری و سازماندهی اطلاعات، 24 (94)، 114-136.
علیمحمدی، داریوش (1393). کاربرد برچسب‌زنی اجتماعی در بازیابی اطلاعات موسیقایی: ملاحظه‌ها و ابزارها. ماهنامه کتاب ماه کلیات، 196 (4)، 86-93.
کرد، لیلا (1381). وضعیت سازماندهی منابع شنیداری موسیقی در آرشیوهای موسیقی شهر تهران. پایان‌نامه کارشناسی ارشد. دانشگاه آزاد اسلامی، واحد تهران شمال، ایران.
میدو؛ چارلز تی؛ و همکاران (1390). نظام‌های بازیابی اطلاعات متنی (نجلا حریری، مترجم). تهران: چاپار.
Bogdanov, D., Wack, N., G´omez, E., Gulati, S., Herrera, P., Mayor, O., & et al. (2013). ESSENTIA: an audio analysis library for music information retrieval. 14th International Society for Music Information Retrieval Conference Brazil (04-11-2013) (493–498). Retrived, November 2, 2014, from http://mtg.upf.edu/node/2793
Cao, L., Hao, P., & Zhou, C. (2014). Music radar: A web-based query by humming system. Retrieved November 12, 2014, from https://www.cs.purdue.edu/homes/pengh/.../547.p
Cliff, D., & Freeburn, H. (2000). Exploration of point-distribution models for similarity-based classification and indexing of polyphonic music. In Proceedings of the 1st International Conference on Music Information. Retrieved Plymouth (Massachusetts), USA. Retrieved November 20, 2015, from http://ismir2000.ismir.net/posters/cliff.pdf
Demopoulos, R., Katchabaw J., & Micheal, J. (2007).  Music information retrieval: A survey of issues and approaches. University of Western Ontario (department of computer science). Retrieved October 14, 2015, from http://www.csd.uwo.ca/~katchab/pubs/tr677.pdf
Dowanie, S. (2003). Music Information Retrieval. Annual Review of Information Science and Technology, 1 (37), 295-340.
Duan, Z., Han, J., Pardo, B. (2014). Multi-pitch streaming of harmonic sound mixtures. IEEE Trans. Audio Speech Language Processing, 22 (1), 138-150. DOI: 10.1109/TASLP.2013.2285484
Kageyama, T., Mochizuki, K. & Takashima, Y. (1993). Melody retrieval with humming. Proceedings of the International Computer Music Conference, (1993) (349-351(. Retrieved Octobr 18, 2015, from http://quod.lib.umich.edu/cgi/p/pod/dod-idx/melody-retrieval-with-humming.pdf?c=icmc; idno=bbp2372.1993.077
Klapuri, A. (2003). Automatic transcription of music.  Proceedings of the Stockholm Music Acoustics Conference (SMAC 03) 1-4. Stockholm, Sweden. Retrieved April 22, 2014, from http://www.music.mcgill.ca/~ich/classes/mumt621_09/transcription/smac2003_klapuri.pdf
LaRue, J .(1992). Fundamental analytic considerations. Guidelines for style Analysis) 2nd ed. (1-22). New York:  Harmonie Park Press.
Lee, J. H., & Cunningham, S. j. (2012). The impact (or non-impact) of user studies. 13th International Society for music information retrieval conference, 105-117. Retrievied November 14, 2014, from http://ismir2012.ismir.net/event/papers/391_ISMIR_2012.pdf
Lesaffre, M., Leman, M., De Voogdt, L., De Baets, B., De Meyer, H., & Martens, J.-P. (2006). A user-dependent approach to the perception of high-level semantics of music. In Mario Baroni (Ed.), Proceedings of the 9th International Conference on Music Perception and Cognition (2006-08-22), (pp. 1003–1008). Presented at the 9th International Conference on Music Perception and Cognition (ICPMC-9), Society for Music Perception & Cognition; European Society for the Cognitive Sciences of Music.Retrieved April 7, 2014, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.542.9533&rep= rep1&type=pdf.
Muerer, W. (2004). Aspects of music information retrieval. Retrieved April 20, 2014, from https://www.yumpu.com/en/document/view/23528041/aspects-of-music-information-retrieval-will-meurer-school-of-.
Peeters, G. (2010). Spectral and temporal periodicity representations of rhythm for the automatic classification of music audio signal. IEEE Trans. On Audio, Speech and language processing,19 (5), 1242 – 1252. DOI: 10.1109/TASL.2010.2089452
Tsunoo, E. (2009). Audio Genre classification Using Percussive pattern clustering combined with timbral features. In International Conference on Multimedia and Expo1. (ICME) 28 June-3 July 2009, (382-385).
Typke, R. (2007). Music retrieval based on melodic similarity. Unpublished doctoral dissertation, Utrecht University, Nederlands.
Tzanetakis, G. (2014). Music Information retrieval. Canada: Victoria University.
Wiering, F. (2007). Can humans benefit from music information retrieval? 8th International Symposium on Music Information Retrieval (ISMIR), Vienna, Austria, 23-27 September 2007, (pp. 82-94). Retrieved April 10, 2014, from http://www.cs.bu.edu/~snyder/cs591/ Handouts/AMRWiering.pdf
Wingate, C. (2009). Music information retrieval, musicology and musical genre. In music technology seminar 21 December 2009 MUMT 621. Retrieved April 20, 2014, from http://www.music.mcgill.ca/~ich/classes/mumt621_11/final%20projects/Final%20project%202009/cedar/Music%20Information%20Retrieval,%20Musicology,%20and%20Musical%20Genre.pdf
CAPTCHA Image