Agrawal, G., Deng, Y., Park, J., Liu, H., & Chen, Y. C. (2022). Building Knowledge Graphs from Unstructured Texts: Applications and Impact Analyses in Cybersecurity Education.
Information, 13(11): 526. DOI:
10.3390/info13110526
Al-Arfaj, A., & Al-Salman, A. (2015). Ontology construction from text: challenges and trends. International Journal of Artificial Intelligence and Expert Systems (IJAE), 6(2): 15-26. URL: https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJAE-169
Allahyari, M., Kochut, K. J., & Janik, M. (2014).
Ontology-based text classification into dynamically defined topics. In 2014 IEEE International Conference on Semantic Computing (pp.273-278). IEEE.
DOI: 10.1109/ICSC.2014.51
Alobaidi, M., Malik, K. M., & Sabra, S. (2018). Linked open data-based framework for automatic biomedical ontology generation. BMC bioinformatics, 19(1): 1-13. DOI: 10.1186/s12859-018-2339-3
Altınel, B., & Ganiz, M. C. (2018). Semantic text classification: A survey of past and recent advances.
Information Processing and Management, 54(6): 1129–1153. DOI:
10.1016/j.ipm.2018.08.001
Asgari-Bidhendi, M., Hadian, A., & Minaei-Bidgoli, B. (2019). Farsbase: The persian knowledge graph.
Semantic Web, 10(6): 1169-1196. DOI:
10.3233/SW-190369
Αντωνίου, Τ. Ά. (2020).
Ontology-based application for knowledge management in ancient Greek mythology, PhD Thesis, Aρıotaστoτ\acute\varepsilonλεıotao Πανεπıotaστ\acute\etaμıotao Θεσσαλoν\acuteıotaκης.
https://ikee.lib.auth.gr/record/320900
Bagheri, A., Saraee, M., & de Jong, F. (2013, May).
Sentiment classification in Persian: Introducing a mutual information-based method for feature selection. In 2013 21st Iranian conference on electrical engineering (pp.1-6). DOI:
10.1109/IranianCEE.2013.6599671
Behrouziannejad, M., Attarzadeh, I., Eftekhar, S., Kazemi, A., & Shakibafakhr, M. (2015, March). Using data mining techniques in the automatic classification of text documents. The first national conference of computer engineering and information technology of Payam Noor University, Isfahan.15-23. https://civilica.com/doc/337433 [In Persian]
Bloehdorn, S., Cimiano, P., Hotho, A., & Staab, S. (2005). An Ontology-based Framework for Text Mining.
LDV Forum - GLDV Journal for Computational Linguistics and Language Technology,
20(1): 87–112. DOI:
10.21248/jlcl.20.2005.70
Bouchiha, D., Bouzianae, A., & Doumi, N. (2023). Ontology based Feature Selection and Weighting for Text classification using Machine Learning. Journal of Information Technology and Computing, 4(1): 1-14. DOI: 10.48185/jitc.v4i1.612
Brscic, M., Contiero, B., Magrin, L., Riuzzi, G., & Gottardo, F. (2021). The use of the general animal-based measures codified terms in the scientific literature on farm animal welfare.
Frontiers in Veterinary Science, 8, 634498.
https://doi.org/10.3389/fvets.2021.634498
Burgueño, L., Hilken, F., Vallecillo, A., & Gogolla, M. (2017). Testing Transformation Models Using Classifying Terms. In E. Guerra and M. Van Den Brand (Eds.), Theory and Practice of Model Transformation, 10374, 69–85. Springer International Publishing. DOI:10.1007/978-3-319-61473-1_5
Chaudhri, V., Baru, C., Chittar, N., Dong, X., Genesereth, M., Hendler, J., Kalyanpur, A., Lenat, D., Sequeda, J., Vrandečić, D., & Wang, K. (2022). Knowledge Graphs: Introduction, History and, Perspectives. AI Magazine, 43(1): 17-29. https://doi.org/10.1002/aaai.12033
Chen, X., Jia, S., & Xiang, Y. (2020). A review: Knowledge reasoning over knowledge graph. Expert Systems with Applications, 141, 112948. DOI: https://doi.org/10.1016/j.eswa.2019.112948
Chen, Z. Y., Shang, Y., & Qian, D. M. (2018). Research on intelligent question answering system based on knowledge graph. Computer Applications and Software, 35(2): 178–182.
Chicaiza, J., & Reátegui, R. (2020).
Using domain ontologies for text classification. A use case to classify computer science papers. In Knowledge Graphs and Semantic Web: Second Iberoamerican Conference and First Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26–27, 2020, Proceedings 2 (pp.166-180). Springer International Publishing. DOI:
10.1007/978-3-030-65384-2_13
Dalal, M. K., & Zaveri, M. A. (2011). Automatic text classification: A technical review.
International Journal of Computer Applications, 28(2): 37–40. DOI:
10.5120/3358-4633
Damerchiloo, M., & Hosseini Beheshti, M. S. (2021). Converting Thesaurus to Ontology (a Systematic Review). Library and Information Science Research, 11(2): 105-127. DOI: 10.22067/infosci.2021.23662.0. [In Persian]
Denecke, K. (2022). Does Enrichment of Clinical Texts by Ontology Concepts Increases Classification Accuracy? MEDINFO 2021: One World, One Health–Global Partnership for Digital Innovation, 290, 602–606. DOI: https://doi.org/10.3233/SHTI220148
Dumitrescu, S. D., Trausan-Matu, S., Brut, M., & Sedes, F. (2013). Ontology-based flexible topic classification of crowdsourcing textual resources. Proceedings of the Fifth International Conference on Management of Emergent Digital EcoSystems (pp.145–151). DOI: https://doi.org/10.1145/2536146.2536172
Ehrlinger, L., & Wöß, W. (2016). Towards a definition of knowledge graphs. SEMANTICS (Posters, Demos, SuCCESS), 48(1-4): 2. URL: https://ceur-ws.org/Vol-1695/paper4.pdf
Fensel, D., Horrocks, I., Van Harmelen, F., Decker, S., Erdmann, M., & Klein, M. (2000). OIL in a Nutshell, 1–16. DOI: https://doi.org/10.1007/3-540-39967-4_1
Fkih, F., & Omri, M. N. (2020). Hidden data states-based complex terminology extraction from textual web data model. Applied Intelligence, 50(6): 1813–1831. DOI: https://doi.org/10.1007/s10489-019-01568-4
Galkin, M., Auer, S., Vidal, M. E., & Scerri, S. (2017, April). Enterprise Knowledge Graphs: A Semantic Approach for Knowledge Management in the Next Generation of Enterprise Information Systems. Proceedings of the 19th International Conference on Enterprise Information Systems (pp.88–98). DOI: https://doi.org/10.5220/0006325200880098
Gomez-Perez, J. M., Pan, J. Z., Vetere, G., & Wu, H. (2017). Enterprise Knowledge Graph: An Introduction. In Exploiting Linked Data and Knowledge Graphs in Large Organisations, 1–14. Springer International Publishing. Doi: https://doi.org/10.1007/978-3-319-45654-6_1
Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge Creation Diffusion Utilization, 5(April): 199–220.URL: https://tomgruber.org/writing/ontolingua-kaj-1993.pdf
Guo, L., Yan, F., Li, T., Yang, T., & Lu, Y. (2022). An automatic method for constructing machining process knowledge base from knowledge graph.
Robotics and Computer-Integrated Manufacturing, 731, 02222. DOI:
10.1016/j.rcim.2021.102222
HaCohen-Kerner, Y., Miller, D., & Yigal, Y. (2020). The influence of preprocessing on text classification using a bag-of-words representation. PloS one, 15(5): e0232525. Doi: 10.1371/journal.pone.0232525
Hashemi, P., Khadivar, A., & Shamizanjani, M. (2018). Developing a domain ontology for knowledge management technologies.
Online Information Review, 42(1): 28-44. DOI:
10.1108/OIR-07-2016-0177
Hashemi, S., & Horali, M. (2016). Category of Persian news in the field of defense using ontology. Second International Conference on Knowledge-Based Research in Computer Engineering and Information Technology: 1-15. [In Persian]
Homavandi, H., Fahimnia, F., Nakhoda, M., & Hoseini Beheshti, M. (2021). A study on ontology building methods: understanding of the features and requirements. Academic Librarianship and Information Research,54(1): 13-39. [In Persian]
Hosseini Pozveh, Z., Monadjemi, A., & Ahmadi, A. (2018). FNLP‐ONT: A feasible ontology for improving NLP tasks in Persian.
Expert Systems, 35(4): e12282. DOI:
10.1111/exsy.12282
Hurlburt, G. F. (2021). The Knowledge Graph as an Ontological Framework.
IT Professional, 23(4): 14-18.
DOI: 10.1109/MITP.2021.3086918
Issa, S., Adekunle, O., Hamdi, F., Cherfi, S.S.S., Dumontier, M., & Zaveri, A. (2021). Knowledge graph completeness: Asystematic literature review. IEEE Access, 9, 31322–31339. Doi: https://DOI.org/10.1109/ACCESS.2021.3056622
Joorabchi, A., & Mahdi, A. E. (2011). An unsupervised approach to automatic classification of scientific literature utilizing bibliographic metadata.
Journal of Information Science, 37(5): 499–514. DOI:
10.1177/0165551511417785
Jung, Y., Ryu, J., Kim, K. M., & Myaeng, S. H. (2010). Automatic construction of a large-scale situation ontology by mining how-to instructions from the web.
Web Semantics: Science, Services and Agents on the World Wide Web, 8(2-3): 110-124. DOI:
http://dx.doi.org/10.2139/ssrn.3199480
Kastrati, Z., Imran, A. S., & Yayilgan, S. Y. (2019). The impact of deep learning on document classification using semantically rich representations.
Information Processing & Management, 56(5): 1618-1632. DOI:
https://doi.org/10.1016/j.ipm.2019.05.003
Khan, S. A., & Bhatti, R. (2012). Application of social media in marketing of library and information services: A case study from Pakistan. Webology, 9(1): 1-8. URL: http://www.webology.org/2012/v9n1/a93.html
Khashabi, D., Cohan, A., Shakeri, S., Hosseini, P., Pezeshkpour, P., Alikhani, M., & Yaghoobzadeh, Y. (2021). Parsinlu: a suite of language understanding challenges for persian.
Transactions of the Association for Computational Linguistics, 9,1147-1162. DOI:
10.1162/tacl_a_00419
Kilimci, Z. H., & Akyokus, S. (2019). The Evaluation of Word Embedding Models and Deep Learning Algorithms for Turkish Text Classification. 2019 4th International Conference on Computer Science and Engineering (UBMK) (pp.548–553). DOI: https://doi.org/10.1109/UBMK.2019.8907027
Krötzsch, M., & Thost, V. (2016).
Ontologies for knowledge graphs: Breaking the rules. In The Semantic Web–ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan, Proceedings, Part I, 15, 76-392. Springer International Publishing. DOI:
10.1007/978-3-319-46523-4_23
Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent Convolutional Neural Networks for Text Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1). DOI: https://doi.org/10.1609/aaai.v29i1.9513
Lan, G., Li, Y., Hu, M., Sun, Y., & Zhang, Y. (2021
). Knowledge Graph Integrated Graph Neural Networks for Chinese Medical Text Classification. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 682-687, IEEE. DOI:
10.1109/BIBM52615.2021.9669286
Lee, Y. H., Tsao, W. J., & Chu, T. H. (2009).
Use of ontology to support concept-based text categorization. In Designing E-Business Systems. Markets, Services, and Networks: 7th Workshop on E-Business, WEB 2008, Paris, France. Revised Selected Papers 7, 201-213, Springer Berlin Heidelberg. DOI:
10.1007/978-3-642-01256-3_17
Lee, Y. H., Hu, P. J. H., Tsao, W. J., & Li, L. (2021). Use of a domain-specific ontology to support automated document categorization at the concept level: Method development and evaluation.
Expert Systems with Applications, 174, 114681. DOI:
https://doi.org/10.1016/j.eswa.2021.114681
Lei, X., Cai, Y., Xu, J., Ren, D., Li, Q., & Leung, H. F. (2019). Incorporating task-oriented representation in text classification. In Database Systems for Advanced Applications: 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, Proceedings, Part II 24, 401-415.Springer International Publishing. https://doi.org/10.1007/978-3-030-18579-4_24
Li, Y., Wei, B., Yao, L., Chen, H., & Li, Z. (2017). Knowledge-based document embedding for cross-domain text classification. In
2017 International Joint Conference on Neural Networks (IJCNN), 1395-1402. IEEE.
DOI: 10.1109/IJCNN.2017.7966016
Lili, D., Jiong, C., Xiang, Z., & Na, Y. E. (2020). Research on disease diagnosis method combining knowledge graph and deep learning.
Journal of Frontiers of Computer Science and Technology, 14(5): 815. URL:
https://arxiv.org/pdf/2305.00359.pdf
Lu, H., Zhengtao, Y., Jinhui, D., Cheng, Z., Cunli, M., & Jianyi, G.2008. The effects of domain knowledge relations on domain text classification. In 2008 27th Chinese Control Conference, 460-463. IEEE. DOI: 10.1109/CHICC.2008.4605079
Ma, Z., Cheng, H., & Yan, L. (2019). Automatic construction of OWL ontologies from Petri nets. International Journal on Semantic Web and Information Systems (IJSWIS), 15(1): 21-51. DOI: 10.4018/IJSWIS.2019010102
Madani, S. (2011). Classification of Persian documents with the help of Fars Net ontology. Master thesis, Shahrood University of Technology. [In Persian]
Mali, M., & Atique, M. (2021). The Relevance of Preprocessing in Text Classification. in Proceedings of Integrated Intelligence Enable Networks and Computing, in Algorithms for Intelligent Systems. Singapore: Springer, 553–559. DOI: 10.1007/978-981-33-6307-6_55.
Malik, S., & Jain, S. (2021). Semantic Ontology-Based Approach to Enhance Text Classification. ISIC, 85–98. URL: http://star.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-2786/Paper16.pdf
Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., &d Gao, J. (2020). Deep Learning Based Text Classification: A Comprehensive Review.
ACM Computing Surveys (CSUR), 54(3): 1–40. DOI:
https://doi.org/10.48550/arXiv.2004.03705
Mohammadi Ostani, M., Azargoon, M., & Cheshmesohrabi, M. (2018). Methodology of Construction and Design of Ontologies: a Case Study of Scientometrics Field. Iranian Journal of Information Processing and Management, 33(4): 1761-1788. DOI: 10.35050/JIPM010.2018.033. [In Persian]
Mumivand, H., Piri, R., S., & Kheiraei, F. (2021). A New Model for Automatic Text Classification. Electrical Science and Engineering, 3(1): 37–40. DOI: https://doi.org/10.30564/ese.v3i1.3170
Nguyen, D. N., Phan, T. T., & Do, P. (2021). Embedding knowledge on ontology into the corpus by topic to improve the performance of deep learning methods in sentiment analysis.
Scientific Reports, 11(1): 23541. DOI:
https://doi.org/10.1038/s41598-021-03011-6
Nguyen, N. T., Gabud, R. S., & Ananiadou, S. (2019). COPIOUS: A gold standard corpus of named entities towards extracting species occurrence from biodiversity literature.
Biodiversity data journal, (7). DOI:
10.3897/BDJ.7.e29626
Novaković, J. D., Veljović, A., Ilić, S. S., Papić, Ž., and Tomović, M. (2017). Evaluation of classification models in machine learning. Theory and Applications of Mathematics and Computer Science 7(1): 39.URL: https://typeset.io/pdf/evaluation-of-classification-models-in-machine-learning-1u2pog86m5.pdf
Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner’s approach. Sebastopol: O’Reilly Media.
Perez, Z. G., Zafar, M. A., Ziganshin, B. A., & Elefteriades, J. A. (2022). Toward standard abbreviations and acronyms for use in articles on aortic disease. JTCVS open, 10, 34-38. https://doi.org/10.1016/j.xjon.2022.04.010
Qian, L., Hao, P., Jianxin, L., Congying, X., Renyu, Y., Lichao, S., Philip, S. Y., & Lifang, H. (2021). A Survey on Text Classification: From Traditional to Deep Learning.
ACM Trans. Intell. Syst. Technol, 37(4): 39. DOI:
https://arxiv.org/pdf/2008.00364.pdf
Ramezani, H., Alipour-Hafezi, M., & Momeni, E. (2014). Scientific Maps: Methods and Techniques. Popularization of Science, 5(1): 53-84. [In Persian]
Ren, X., El-Kishky, A., Wang, C., & Han, J. (2015, August). Automatic Entity Recognition and Typing from Massive Text Corpora: A Phrase and Network Mining Approach. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2319-2320. https://doi.org/10.1145/2783258.2789988
Reyhani-Arani, E., & Lajardi, M. R. (2015, Aug). Investigating methods of automatic classification of textual documents. National Conference on Electricity and Computer, Distributed Systems and Smart Networks, 3.URL: https://www.sid.ir/fa/seminar/ViewPaper.aspx?ID=80521[In Persian]
Rozeva, A. (2012). Classification of text documents supervised by domain ontologies.
Applied Innovations and Technologies, 8(3): 1-12. Doi:
10.15208/ati.2012.11
Sajadi, M. B., & Minaei Bidgoli, B. (2020). The Architecture of Farsi Knowledge Graph System.
Iranian Journal of Information Processing and Management, 35(2): 425-462. DOI:
10.35050/JIPM010.2020.057
Shan, G., Foulds, J., & Pan, S. (2020). Causal feature selection with dimension reduction for interpretable text classification. arXiv preprint, 2010.04609. https://doi.org/10.48550/arXiv.2010.04609
Shin, J., wu, S., Wang, feiran, De Sa, C., Zhang, C., & Re, C. (2015). Incremental knowledge base construction using deepdive.
Proceedins of the VLDB Endowment International Conference on Very Large Data Base, 8, 1310. DOI:
10.14778/2809974.2809991
Shirmardi, F., Hosseini, S. M. H., & Momtazi, S. (2021). FarsWikiKG: an Automatically Constructed Knowledge Graph for Persian.
International Journal of Web Research, 4(2): 25-30. DOI:
10.22133/IJWR.2022.337760.1112
Sinoara, R. A., Camacho-Collados, J., Rossi, R. G., Navigli, R., & Rezende, S. O. (2019). Knowledge-enhanced document embeddings for text classification. Knowledge-Based Systems, 163, 955-971. https://doi.org/10.1016/j.knosys.2018.10.026
Soleimani Nezhad, A., Salajegheh, M., & Tayyebi Nia, E. (2019). Clustering scientific articles based on the k_means algorithm Case Study: Iranian Research Institute for information Science and Technology (IranDoc). Iranian Journal of Information Processing and Management, 34(2): 871-896. DOI: 10.35050/JIPM010.2019.060. [In Persian]
Song, M. H., Lim, S. Y., Kang, D. J., & Lee, S. J. (2005). Automatic classification of web pages based on the concept of domain ontology.
12th Asia-Pacific Software Engineering Conference. DOI:
10.1109/APSEC.2005.46
Song, X., Bai, L., Liu, R., & Zhang, H. (2022).
Temporal Knowledge Graph Entity Alignment via Representation Learning. In International Conference on Database Systems for Advanced Applications, 391-406, Cham: Springer International Publishing. DOI:
https://doi.org/10.1007/978-3-031-00126-0_30
Sotoudeh, H. & Honarjoyan, Z. (2012). An overview of the difficulties of the Persian language in the digital environment and their effects on the effectiveness of automatic text processing and information retrieval. Library and Information Sciences, 15(4): 59-92. [In Persian]
Sun, K., Liu, Y., Guo, Z., & Wang, C. (2016). Visualization for knowledge graph based on education data.
International Journal of Software and Informatics, 10(3): 1-13. DOI:
10.1145/2968220.2968227
Sun, M., Guo, Z., & Deng, X. (2021). Intelligent BERT-BiLSTM-CRF Based Legal Case Entity Recognition Method.
In Proceedings of the ACM Turing Award Celebration Conference-China. 186-191. DOI:
10.1145/3472634.3474069
Suneera, C. M., & Prakash, J. (2020). Performance Analysis of Machine Learning and Deep Learning Models for Text Classification. In 2020 IEEE 17th India Council International Conference (INDICON), 1–6. DOI:https://doi.org/10.1109/INDICON49873.2020.9342208
Varga, A. (2014). Exploiting domain knowledge for cross-domain text classification in heterogeneous data sources. [Doctoral dissertation, University of Sheffield]
Wasi, S., Sachan, M., & Darbari, M. (2020). Document classification using wikidata properties. In
Information and Communication Technology for Sustainable Development: Proceedings of ICT4SD 2018,729-737. Springer Singapore. DOI:
10.1007/978-981-13-7166-0_73
Wei, F., Qin, H., Ye, S., & Zhao, H. (2019). Empirical Study of Deep Learning for Text Classification in Legal Document Review. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 3317–3320. DOI: https://doi.org/10.1109/BigData.2018.8622157
Xu, P., & Sarikaya, R. (2014, May). Contextual domain classification in spoken language understanding systems using recurrent neural network.
In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),136-140. IEEE.
DOI: 10.1109/ICASSP.2014.6853573
Yousif, S. A., Sultani, Z. N., & Samawi, V. W. (2019). Utilizing Arabic WordNet Relations in Arabic Text Classification: New Feature Selection Methods. IAENG International Journal of Computer Science, 46(4): 750-761.
Zhang, R., Trisedya, B. D., Li, M., Jiang, Y., & Qi, J. (2022). A benchmark and comprehensive survey on knowledge graph entity alignment via representation learning.
The VLDB Journal, 31(5): 1143-1168. DOI:
https://doi.org/10.48550/arXiv.2103.15059
Zhang, W., & Xu, C. (2020). Microblog Text Classification System Based on TextCNN and LSA Model. 2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT), 469–474. DOI:https://doi.org/10.1109/ISCTT51595.2020.00090
Zhou, P., & El-Gohary, N. (2016). Ontology-based multilabel text classification of construction regulatory documents. Journal of Computing in Civil Engineering, 30(4): 04015058. DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.000053
Send comment about this article