Identifying the Factors Affecting Query Formulation: A Systematic Review

Document Type : Research َ Article

Authors

1 MA Student, Knowledge and Information Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran

2 department of knowledge and information science, shiraz university

3 Knowledge & Information Sciences, School of Psychology & Education, Shiraz University, Shiraz, Iran

Abstract

Purpose: To identify the most important factors affecting query formulation.
Method: The design of this study was qualitative. The factors were extracted and categorized through a systematic review and an analytical meta-analysis in six steps. The steps included: determining keywords, creating inclusion criteria and deleting articles, background search, extracting lists A, B and C, descriptive analysis, and thematic analysis. In this regard, based on a search cycle and using a number of keywords approved by experts, articles related to the factors affecting the query formulation were studied. After descriptive analysis of these resources, contents were extracted according to the topic. The research population included all published articles on the factors affecting the query formulation in the period from 1991 to 2021. These resources were searched in reliable databases such as Scopus, Springer, Emerald, Web of Science, Elsevier, Eric, ProQuest, Ebsco, Cite Seer, Information Research, LISA, LISTA and Wiley. After extracting articles, collecting and analysing qualitative data, these analyses were used to determine the factors affecting the query formulation.
Results: Findings showed that the factors affecting the query formulation itself originate from several fields such as user and retrieval task, which can be classified into two general categories of user-related factors and task-related factors. User-related factors included subject knowledge, knowledge of how to use the search system, search experience, language, demographic features, contextual factors, cognitive style, and cognitive load. Task-related factors included the type of search task and task difficulty. These factors change the formulation process in different ways that can be considered both positive and negative, as some of them may help to improve the quality of the formulation, others may prevent retrieval to be performed correctly.
Conclusion: Identifying factors affecting the query formulation and analysing the relationships between them can improve the quality of information literacy training by experts in this field. Also, it helps web designers create search tools tailored to the user's needs. Since formulation is an important part of information retrieval behaviours, recognizing the influencing factors can help discovering information retrieval patterns. Understanding how to formulate a query under the influence of various factors and recognizing these factors, can help increase the quality of search and retrieve more relevant results and improve human-computer interaction.
 

Keywords

Main Subjects


اسدی، مریم (۱۳۹۳). تحلیل رفتار فرمول­بندی مجدد عبارت جست‌وجوی کاربران بر محیط وب با تأکید بر سبک­های شناختی کلی­نگر و جزئی­نگر، تجربه وب و وظیفه جست‌وجو. تعامل انسان واطلاعات، ۱۳(۳)، ۱۹۱-۲۰۳.
بحرینی، نعیمه، میرزابیگی، مهدیه و ستوده، هاجر (۱۳۹۷). تفاوت عملکرد جست‌وجوی مروری کاربران با سبک‌های شناختی و تجربیات متفاوت: نمونه‌پژوهی وب‌سایت‌های فروش کالا. مطالعات ملی کتابداری و سازماندهی اطلاعات، ۲۹(۱)، ۶۷-۸۴.
حریری، نجلا، اسدی، مریم و نوشین‌فرد، فاطمه (۱۳۹۳). تحلیل رفتار جست‌وجوی اطلاعات پژوهشگران حوزه­های مختلف علوم از وب براساس سبک‌های شناختی کلامی و تصویری. پژوهشنامه پردازش و مدیریت اطلاعات، ۲۹(۴)، ۱۰۰۷-۱۰۳۶.
طرزی مقدم، سارا، ذاکریان، سید ابوالفضل و نسل سراجی، جبرائیل (۱۳۹۲). ارتباط توانایی شناختی با ویژگی‌های دموگرافیک در مهندسین نرم‌افزار شاغل در شرکت‌های کامپیوتری تهران. سلامت کار ایران، ۱۰(۵)، ۵۶-۶۲.
قربانی، نیما و واتسن، پی. جی (۱۳۸۴). فرایندهای خودشناختی و نظام‌های پردازش خبر عقلانی و تجربه‌ای در ایران و آمریکا. روا‌ن‌شناسی تحولی: روان‌شناسان ایران، ۲(۵)، ۳-۱۴.
ولایتی، الهه، نیلی احمدآبادی، محمدرضا، زارعی زوارکی، اسماعیل، شریفی درامدی، پرویز و سعدی­پور، اسماعیل (۱۳۹۷). طراحی الگوی آموزشی مبتنی بر نظریه بار شناختی براساس تحلیل محتوای کیفی و اعتباریابی درونی و بیرونی آن. فصلنامه روان­شناسی تربیتی، ۱۴(۴۹)، ۱-۲۷.
References
Asadi, M. (2014). Analysis of user’s query reformulation behavior in web with regard to wholistic/analytic cognitive styles, web experience, and search task type. Human Information Interaction, 13(3), 191-203.[In Persian]
Aula, A. (2003). Query formulation in web information search. Proceeding of IADIS international conference, www/ internet 2003 (vol. I, pp.403-410).
Aula, A., Khan, R. M., & Guan, Z. (2010). How does search behavior change as search becomes more difficult?. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 35-44).
Bahreini, N., Mirzabeigi, M., & Sotoudeh, H. (2018). The Browsing Performance Differences among Users with Different Cognitive Styles and Experiences: Case study of Shopping Websites, National Studies on Librarianship and Informaion Organization, 29(1), 67. magiran.com/p1837188 [In Persian]
Bai, J., Nie, J. Y., Cao, G., & Bouchard, H. (2007). Using query contexts in information retrieval. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 15-22).
Baldwin, A. N., Gadd, E., & Balatsoukas, P. (2010). A study of students’ information searching strategies.
Bilal, D., & Gwizdka, J. (2018). Children's query types and reformulations in Google search. Information Processing & Management, 54(6), 1022-1041.
Bimber, B. (2000). Measuring the gender gap on the Internet. Social Science Quarterly, 81(3), 868-876
Cai, F.; Chen, H.; & De Rijke, M. (2018). Attention-based hierarchical neural query suggestion. In proceedings of the 41th intrnational ACM SIGIR conference on research and development in information retrieval (1093-1096). New York: ACM.
Cardin, J. A., Kumbhani, R. D., Contreras, D., & Palmer, L. A. (2010). Cellular mechanisms of temporal sensitivity in visual cortex neurons. Journal of Neuroscience, 30(10), 3652-3662.
Chau, M., Fang, X., & Yang, C. (2007). Web searching in chinese: A study of a search engine in Hongkong. Journal of the American Society for Information Science and Technology, 58(7), 1044-1054.
Choi, Y. (2010). Investigating variation in querying behavior for image searches on the web. Proceedings of the American Society for Information Science and Technology47(1), 1-10.
Chu, P., Komlodi, A., & Rózsa, G. (2015). Online search in english as a non‐native language. Proceedings of the Association for Information Science and Technology52(1), 1-9.
Dey, A. K. & Abowd, G. D. (2000). Towards a Better Understanding of Context and Context-Awareness, CHI2000 Workshop on the What, Who, Where, When, and How of Context-Awareness.
Dommes, A., Chevalier, A., & Lia, S. (2011). The role of cognitive flexibility and vocabulary abilities of younger and older users in searching for information on the web. Applied Cognitive Psychology25(5), 717-726.
Dosso, C., Tamine, L., Paubel, P. V., & Chevalier, A. (2021, June). The Impact of Expertise on Query Formulation Strategies During Complex Learning Task Solving: A Study with Students in Medicine and Computer Science. In Congress of the International Ergonomics Association (pp. 621-627). Springer, Cham.‏
Eagly. A, H. (1987). Sex Differences In Social Behavior: A Social Role Interpretation. London: Taylor Francis Incorporation.
Fails, J. A., Pera, M. S., Anuyah, O., Kennington, C., Wright, K. L., & Bigirimana, W. (2019, June). Query formulation assistance for kids: What is available, when to help & what kids want. In Proceedings of the 18th ACM International Conference on Interaction Design and Children (pp. 109-120).‏
Ghorbani, N., & Watson, P. (2005). Self-knowledge processes and rational and experiential information processing systems in iran and the united states. Journal of Iranian Psychologist, 2(5), 3-14. [In Persian]
Goldstein, K. M., & Blackman, S. (1978). Cognitive style: Five approaches and relevant research. John Wiley & Sons.
Gwizdka, J. (2010). Distribution of cognitive load in web search. Journal of the American Society for Information Science and Technology, 61(11), 2167-2187.
Hariri, N., Asadi, M. & Nooshinfard, F. (2014). Analysis of Researchers’ Information Searching Behavior Based on Verbal/ Imagery Cognitive Styles on Web. Journal of Information Processing and Management. 29(4), 1007-1036. [In Persian]
Hsieh‐Yee, I. (1993). Effects of search experience and subject knowledge on the search tactics of novice and experienced searchers. Journal of the american society for information science44(3), 161-174.
Karanam, S., Van Oostendorp, H., Sanchiz, M., Chevalier, A., Chin, J., & Fu, W. T. (2015, July). Modeling and predicting information search behavior. In Proceedings of the 5th international conference on web intelligence, mining and semantics (pp. 1-12).‏
Kim, K. S. (2001). Information-seeking on the Web: Effects of user and task variables. Library & Information Science Research23(3), 233-255.
Kim, K. S., & Allen, B. (2002). Cognitive and task influences on web searching behavior. Journal of the American Society for Information Science and Technology, 53(2), 109-119.
Kinley, K., Tjondronegoro, D., Partridge, H., & Edwards, S. (2012, November). Human-computer interaction: the impact of users' cognitive styles on query reformulation behaviour during web searching. In Proceedings of the 24th Australian Computer-Human Interaction Conference (pp. 299-307).‏
Kinley, K., Tjondronegoro, D., Partridge, H., & Edwards, S. (2012, December). Relationship between the nature of the search task types and query reformulation behaviour. In Proceedings of the Seventeenth Australasian Document Computing Symposium (pp. 39-46).‏
Klewitz, J., & Hansen, E. G. (2014). Sustainability-oriented innovation of SMEs: a systematic review. Journal of cleaner production, 65, 57-75.
Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. FT press.
Kumara, B. (2009). Factors affecting query formulation in web information search: A case study of the university of MORATUWA. Available at : http;dl.lib.mrt.ac.ik/handle/123/10025.
Lee, C. J., Lin, Y. C., Chen, R. C., & Cheng, P. J. (2009, October). Selecting effective terms for query formulation. In Asia Information Retrieval Symposium (pp. 168-180). Springer, Berlin, Heidelberg.‏
Liu, C., Zhang, X., & Hung, W. (2016). The exploration of objective task difficulty domain knowledge effect on user’s query formulation. Proceeding of the association for information science and technology, 53(1), 1-9.
Liu, Y., Song, R., Chen, Y., Nie, J. Y., & Wen, J. R. (2012, August). Adaptive query suggestion for difficult queries. In Proceedings of the 35th International ACM SIGIR conference on research and development in Information Retrieval (pp. 15-24).‏
Lopes, C. T. (2009, September). Context features and their use in information retrieval. In Third BCS-IRSG Symposium on Future Directions in Information Access (FDIA 2009) 3 (pp. 36-42).‏
Lopes, C. T., & Ribeiro, C. (2010, August). Context effect on query formulation and subjective relevance in health searches. In Proceedings of the third symposium on Information interaction in context (pp. 205-214).‏
Lopes, C. T., & Ribeiro, C. (2016, September). Effects of language and terminology on the usage of health query suggestions. In International Conference of the Cross-Language Evaluation Forum for European Languages (pp. 83-95). Springer, Cham.‏
Lu, K., Joo, S., Lee, T., & Hu, R. (2017). Factors that influence query reformulations and search performance in health information retrieval: A multilevel modeling approach. Journal of the Association for Information Science and Technology, 68(8), 1886-1898.
Mat Yamin, F., Ramayah, T., & Wan Ishak, W. H. (2013). Search interface to capture searchers behaviour. International Journal of Computing Academic Research (IJCAR), 2(2), 67-74.
Meadow, C. T.; Boyce, B. R.; & Kraft, D. H. (2000). Text information retrieval systems (2nd ed.). San Diego: Academic Press.
Monchaux, S., Amadieu, F., Chevalier, A., & Mariné, C. (2015). Query strategies during information searching: Effects of prior domain knowledge and complexity of the information problems to be solved. Information Processing & Management51(5), 557-569.
Munusamy, K., & Ismail, M. (2009). INFLUENCE OF GENDER ROLE ON INTERNET USAGE PATTERN AT HOME AMONG ACADEMICIANS. Journal of International Social Research2(9), 308-318.
Na, K. (2012). Exploring the Effect of Cognitive Load on the Propensity for Query Reformulation Behavior. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-5062
Niu, X., & Kelly, D. (2014). The use of query suggestions during information search. Information Processing & Management50(1), 218-234.
Oltwater, S. A. J. (2020). Exploring relations between search queries and consumer decision making intents: Using an innovative approach to resemble a search engine and study search query anatomy (Master's thesis, University of Twente).
Pask, G. (1976). Conversational techniques in the study and practice of education. British Journal of Educational Psychology, 46, 12–25.
Riding, R., & Cheema, I. (1991). Cognitive styles—an overview and integration. Educational psychology11(3-4), 193-215.
Rieh, S. Y., & Xie, H. (2001, November). Patterns and sequences of multiple query reformulations in web searching: A preliminary study. In Proceedings of the Annual Meeting-American Society for Information Science (Vol. 38, pp. 246-255). Information Today; 1998.‏
Sanchiz, M., Chevalier, A., & Amadieu, F. (2017). How do older and young adults start searching for information? Impact of age, domain knowledge and problem complexity on the different steps of information searching. Computers in Human Behavior, 72, 67-78.
Sanchiz, M., Chin, J., Chevalier, A., Fu, W. T., Amadieu, F., & He, J. (2017). Searching for information on the Web: Impact of cognitive aging, prior domain knowledge and complexity of the search problems. Information Processing & Management53(1), 281-294.
Scells, H., Zuccon, G., & Koopman, B. (2021). A comparison of automatic Boolean query formulation for systematic reviews. Information Retrieval Journal24(1), 3-28.
Sutcliffe, A., & Enis, M. (1998). Toward a cognitive theory of information retrieval. interactive with computers, 10, 321-351.
Tamine, L., & Chouquet, C. (2017). On the impact of domain expertise on query formulation, relevance assessment and retrieval performance in clinical settings. Information Processing & Management53(2), 332-350.
Tarzimoghadam. S., Zakerian, S., & Nasle Seraji, J. (2013). The relationship between cognitive ability and demographic charactristics in Tehran computer software engineers. Iran Occupational Health Journal, 10(5), 56-62 URL: http://ioh.iums.ac.ir/article-1-808-fa.html [In Persian]
Vakkari, P. (2000). Cognition and changes of search terms and tactics during task performance: A longitudinal case study. In Content-Based Multimedia Information Access-Volume 1 (pp. 894-907).‏
Velayati, E., Nili Ahmadabadi, M., Zarei Zavaraki, E., Sharifi Daramadi, P., & Sadipour, E. (2018). Designing instructional model based on cognitive load theory based on qualitative content analysis and internal and external validity. Educational Psychology14(49), 1-27. [In Persian]
Wacholder, N. (2011). Interactive query formulation. Annual review of information science and technology, 45(1), 157-196.
Weber, I., & Castillo, C. (2010, July). The demographics of web search. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 523-530).‏
White, R. W., & Marchionini, G. (2007). Examining the effectiveness of real-time query expansion. Information Processing & Management, 43(3), 685-704.
White, R. W., Ruthven, I., & Jose, J. M. (2005). A study of factors affecting the utility of implicit relevance feedback. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 35-42).‏
Wildemuth, B. M. (2004). The effects of domain knowledge on search tactic formulation. Journal of the american society for information science and technology, 55(3), 246-258.
Xie, I., & Joo, S. (2012). Factors affecting the selection of tactics: tasks, knowledge, process and systems. Information processing and management, 48(2), 254-270.
Xing, Z., & Vizer, L. (2020). The Age-related Differences in Web Information Search Process. arXiv preprint arXiv:2010.13352.
Yamin, F. M., & Ramayah, T. (2011). User web search behavior on query formulation. In 2011 International Conference on Semantic Technology and Information Retrieval (pp. 182-188). IEEE.‏
Yilma, T. M., Inthiran, A., Reidpath, D. D., & Orimaye, S. O. (2019). Context-Based Interactive Health Information Searching. Information Research: An International Electronic Journal24(2), n2.
Zhang, X. (2015). An analysis of querying behaviors between domain knowledgeable users and novice
CAPTCHA Image