بررسی نقش هستی‌شناسی و نمودار دانش در طبقه‌بندی اسناد متنی: مروری بر مطالعات

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، علم اطلاعات و دانش شناسی، دانشگاه اصفهان، اصفهان، ایران

2 دانشیار، گروه علم اطلاعات و دانش شناسی، دانشگاه اصفهان، اصفهان، ایران

3 استادیار، گروه مهندسی کامپیوتر، دانشگاه اصفهان، اصفهان، ایران

10.30484/nastinfo.2024.3548.2264

چکیده

 هدف: باتوجه به افزایش نرخ استفاده از اینترنت و افزایش حجم اسناد الکترونیکی قابل‌مشاهده در وب، طبقه‌بندی خودکار متن تبدیل به یکی از روش‌های کلیدی برای ارتقای بازیابی اطلاعات و مدیریت دانش مجموعه‌های متنی دیجیتالی شده است. افراد با طبقه‌بندی متون می‌توانند اطلاعات موردنیاز خود را با دقت بیشتر و سرعت بالاتر جستجو و بازیابی کنند. آن چیزی که در بحث طبقه‌بندی خودکار اسناد حائز اهمیت است، برچسب‍گذاری اسناد به کلاس‌های از پیش تعریف شده است، به‌گونه‌ای که اسنادی که در یک طبقه جای می‍گیرند بیشترین شباهت و با اسناد سایر طبقه‌ها بیشترین تفاوت را داشته باشند و قابلیت استفاده از روابط معنایی را داشته باشد. در ایــن راســتا، پژوهــش حاضــر به بررسی نقش هستی‍شناسی و نمودار دانش در طبقه‌بندی خودکار اسناد متنی می‌پردازد.
روش: این مطالعه به‍مرور پژوهش‍ها و اسناد مرتبط با کاربرد ابزارهای معنایی مانند هستی‍شناسی‍ها و نمودار دانش در طبقه‍بندی اسناد متنی پرداخته است. به منظور جمع‌آوری متون، سه پایگاه اطلاعاتی داخلی شامل «بانک اطلاعات نشریات کشور»، «پایگاه مرکز اطلاعات علمی جهاد دانشگاهی» و «مرجع دانش» و سه پایگاه استنادی خارجی یعنی «وب آو ساینس»، «اسکوپوس» و «گوگل اسکالر» بدون درنظرگرفتن بازۀ زمانی در هر دو دسته بررسی شده است.
یافته‌ها: نتایج واکاوی متون نشان داد در مدل فضای برداری ارتباط معنایی بین کلمات در نظر گرفته نمی‍شود و ترتیب کلمات در جملات از بین می‍رود. با نادیده‌گرفتن روابط معنایی و نحوی مختلف بین کلمات در زبان طبیعی، بازنمایی متفاوتی از اسناد فراهم می‌شود؛ اما هستی‌شناسی‌ها و نمودار دانش با دریافت معنای موجودیت‌ها و کلاس‌ها به تقویت مدل‌های یادگیری ماشینی کمک می‌نمایند. استفاده از این ابزارها به عنوان یک‍ مرجع خارجی در ‍حین فرایند طبقه‌بندی عمل می‌کند و دانش زمینه را برای مدل‌های طبقه‌بندی ‍فراهم می‌نماید. به‌طورکلی استفاده از این ابزارها به ماشینن‌ها اجازه می‍دهند معنای داده‌هایی را که با آن‌ها کار می‌کنند، درک کنند.
نتیجه‌گیری: کاربست هستی‌شناسی‌ها و نمودار دانش در طبقه‌بندی اسناد متنی می‌تواند موجب تقویت نتایج الگوریتم‌های یادگیری ماشین از طریق بهره‍برداری از دانش ‍زمینه ‍شود. این ابزارها می‍تواند معانی کلمات را از جملات دارای ابهام آزاد نموده و مشکلات مرتبط با زبان طبیعی را حل کند. استفاده از هستی‌شناسی و نمودار دانش می‌تواند به‌طور مؤثری در طبقه‌بندی اسناد متنی کمک کند و باعث ارتقای دقت و کارایی مدل‍های طبقه‌بندی شود؛ اما ساخت و ادغام هستی‍شناسی و نمودار دانش امری خسته‌کننده، زمان‍بر و پیچیده است که امکان‍پذیری و ارزش عملی آن‍ها را محدود می‍کند. در زبان فارسی علاوه بر مشکل مطرح‍شده در به‍کارگیری هستی‌شناسی‌ها و نمودار دانش در طبقه‌بندی اسناد، محدودیت‌هایی مانند ویژگی‌های خاص زبان فارسی در نگارش و محدودیت فنی وجود دارد؛ لذا استفاده از هستی‍شناسی و نمودارهای دانش عمومی‍ و یا دامنه در بحث طبقه‍بندی اسناد نیازمند توجه به این محدودیت‌ها و پیچیدگی‌های فنی است و علاوه بر این مستلزم توسعه و تلاش‌های بیشتری بالأخص در زبان فارسی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Role of Ontology and Knowledge Graph in Text Document Classification: A Review of Studies

نویسندگان [English]

  • Saiede Khalilian 1
  • Mitra Pashootanizade 2
  • Ali Mansouri 2
  • Hamidreza Baradaran Kashani 3
1 Ph.D. Candidate, Knowledge and Information Science, University of Isfahan, Isfahan, Iran
2 Associate Professor, Knowledge and Information Science Group, University of Isfahan, Isfahan, Iran
3 Assistant Professor, Computer Engineering Group, University of Isfahan, Isfahan, Iran
چکیده [English]

Purpose: With the increasing use of the internet and the growing volume of electronically accessible documents on the web, automatic text classification has become a critical method for enhancing information retrieval and managing digital text collections. Text classification allows individuals to search for and retrieve information more accurately and quickly. The significance of automatic document classification lies in labeling documents into predefined classes so that documents within a class exhibit the highest similarity and the most remarkable dissimilarity with documents from other classes while utilizing semantic relationships. This study investigates the application of ontology and knowledge graphs in automatic text document classification.
Method: This study reviewed research and documents related to applying semantic tools such as ontologies and knowledge graphs in text document classification. To collect texts, three domestic databases, including the "National Journal Database," the "Scientific Information Database of Jihad University," and "Marefate Danesh," along with three internal databases "Magiran," "SID" and "Civilica" and three external citation databases, such as "Web of Science", "Scopus" and "Google Scholar" It has been examined in both categories, regardless of the period.
Findings: Results of text exploration show that the vector space model does not consider the semantic relationships between words and disregards the word order in sentences. Neglecting the semantic and syntactic relationships between words in natural language provides a different representation of documents. However, ontologies and knowledge graphs help strengthen machine learning models by capturing the meaning of entities and classes. These tools act as an external reference during the classification process and provide domain knowledge for classification models. Using these tools generally allows machines to comprehend the meaning of the data they work with.
Conclusion: The application of ontologies and knowledge graphs in classifying textual documents can strengthen the results of machine learning algorithms through background knowledge. These tools can free the meanings of words from ambiguous sentences and solve problems related to natural language. Using ontology and knowledge graphs can effectively help classify textual documents and improve the accuracy and efficiency of classification models. However, constructing and integrating ontologies and knowledge graphs is a tedious, time-consuming, and complex task that limits the feasibility and practical application of these tools. In the Persian language, in addition to the problems raised in the application of ontologies and knowledge graphs in the classification of documents, there are limitations such as the specific features of the language in writing and technical limitations. Therefore, the use of ontology and knowledge graphs in discussing the classification of textual documents requires attention to linguistic limitations and technical complexity, and the need for further development and efforts is felt, especially in Persian.

کلیدواژه‌ها [English]

  • Automatic Classification
  • Text Documents
  • Knowledge Graph
  • Ontology
  • Domain Knowledge
بهروزیان نژاد، محمد، عطار زاده، ایمان، افتخار، شادی، کاظمی، احمد و شکیبا فخر، محسن (1393). استفاده از تکنیک دادهکاوی در دستهبندی خودکار اسناد متنی. اولین همایش ملی مهندسی کامپیوتر و فناوری اطلاعات دانشگاه پیام نور. اصفهان: 15-23. https://civilica.com/doc/337433
دمرچی لو، منصوره و حسینی بهشتی، ملوک‍السادات (1400). قابلیت تبدیل اصطلاح‍نامه به هستی‍شناسی (مرور سیستماتیک). پژوهشنامه کتابداری و اطلاع‍رسانی، 11(2): 105-127.
رمضانی، ‍هادی، علیپورحافظی، مهدی و مؤمنی، عصمت (1393). نقشه‍های علمی: فنون و روش‍ها. ترویج علم، 5 (6): 53–84.
ریحانی آرانی، احسان و لاجوردی‍، محمدرضا (1395). بررسی روشهای طبقهبندی خودکار اسناد متنی. کنفرانس ملی برق و کامپیوتر سیستم‍های توزیع‍شده و شبکه‍های هوشمند، کاشان: 540-546، https://civilica.com/doc/622157
ستوده، ‍هاجر و هنرجویان، زهره (1391). مروری بر دشواری‍های زبان فارسی در محیط دیجیتال و تأثیرات آن‍ها بر اثربخشی پردازش خودکار متن و بازیابی اطلاعات. کتابداری و اطلاعرسانی، 15(4): 59-92.
سلیمانی نژاد، عادل، سلاجقه، مژده و طبیبی‍نیا، الهام (1397). خوشه‍بندی مقالات علمی بر پایة الگوریتم k_mean مطالعه موردی: پایگاه پژوهشگاه علوم و فناوری اطلاعات ایران (ایرانداک). پژوهشنامه پردازش و مدیریت اطلاعات، 34(2):871–896.
محمدی استانی، مرتضی، آذرگون، مریم و چشمه سهرابی، مظفر (1397). روش‍شناسی ساخت و طراحی هستی نگاشت‍ها: مورد پژوهی علم‍سنجی. پردازش و مدیریت اطلاعات،33(4): 1765-1792.
مدنی، صبا‍السادات (1391). دستهبندی اسناد فارسی به کمک هستانشناسی فارس نت. پایان‍نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود، شاهرود.
هاشمی، سیامک‍ و حور علی، مریم (1396). دستة اخبار فارسی حوزه دفاعی با استفاده از هستانشناسی. دومین کنفرانس بین‍المللی پژوهش‍های دانش‍بنیان در مهندسی کامپیوتر و فناوری اطلاعات، دانشگاه خوارزمی، تهران: 1–15.
هماوندی، هدی، فهیم نیا، فاطمه، ناخدا، مریم و حسینی بهشتی، ملوک‍السادات (1399). مطالعه روش‍های ایجاد هستی‍شناسی: شناسایی مؤلفه‍ها و ویژگی‍ها بر مبنای تحلیل پژوهش‍های انجام‍شده. تحقیقات کتابداری و اطلاع‍رسانی دانشگاهی، 54(1): 13-39.
References
Agrawal, G., Deng, Y., Park, J., Liu, H., & Chen, Y. C. (2022). Building Knowledge Graphs from Unstructured Texts: Applications and Impact Analyses in Cybersecurity Education. Information, 13(11): 526.‏ DOI: 10.3390/info13110526
Al-Arfaj, A., & Al-Salman, A. (2015). Ontology construction from text: challenges and trends. International Journal of Artificial Intelligence and Expert Systems (IJAE), 6(2): 15-26.‍ URL: https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJAE-169
Allahyari, M., Kochut, K. J., & Janik, M. (2014). Ontology-based text classification into dynamically defined topics. In 2014 IEEE International Conference on Semantic Computing (pp.273-278). IEEE.‏ DOI: 10.1109/ICSC.2014.51
Alobaidi, M., Malik, K. M., & Sabra, S. (2018). Linked open data-based framework for automatic biomedical ontology generation. BMC bioinformatics, 19(1): 1-13.‍ DOI: 10.1186/s12859-018-2339-3
Altınel, B., & Ganiz, M. C. (2018). Semantic text classification: A survey of past and recent advances. Information Processing and Management, 54(6): 1129–1153. DOI: 10.1016/j.ipm.2018.08.001
Asgari-Bidhendi, M., Hadian, A., & Minaei-Bidgoli, B. (2019). Farsbase: The persian knowledge graph. Semantic Web, 10(6): 1169-1196.‏ DOI: 10.3233/SW-190369
Αντωνίου, Τ. Ά. (2020). Ontology-based application for knowledge management in ancient Greek mythology, PhD Thesis, Aρıotaστoτ\acute\varepsilonλεıotao Πανεπıotaστ\acute\etaμıotao Θεσσαλoν\acuteıotaκης. https://ikee.lib.auth.gr/record/320900
Bagheri, A., Saraee, M., & de Jong, F. (2013, May). Sentiment classification in Persian: Introducing a mutual information-based method for feature selection. In 2013 21st Iranian conference on electrical engineering (pp.1-6).‏ DOI: 10.1109/IranianCEE.2013.6599671
Behrouziannejad, M., Attarzadeh, I., Eftekhar, S., Kazemi, A., & Shakibafakhr, M. (2015, March). Using data mining techniques in the automatic classification of text documents. The first national conference of computer engineering and information technology of Payam Noor University, Isfahan.15-23. https://civilica.com/doc/337433 [In Persian]
Bloehdorn, S., Cimiano, P., Hotho, A., & Staab, S. (2005). An Ontology-based Framework for Text Mining. LDV Forum - GLDV Journal for Computational Linguistics and Language Technology, 20(1): 87–112. DOI: 10.21248/jlcl.20.2005.70
Bouchiha, D., Bouzianae, A., & Doumi, N. (2023). Ontology based Feature Selection and Weighting for Text classification using Machine Learning. Journal of Information Technology and Computing, 4(1): 1-14.‏ DOI: 10.48185/jitc.v4i1.612
Brscic, M., Contiero, B., Magrin, L., Riuzzi, G., & Gottardo, F. (2021). The use of the general animal-based measures codified terms in the scientific literature on farm animal welfare. Frontiers in Veterinary Science, 8, 634498.‏ https://doi.org/10.3389/fvets.2021.634498
Burgueño, L., Hilken, F., Vallecillo, A., & Gogolla, M. (2017). Testing Transformation Models Using Classifying Terms. In E. Guerra and M. Van Den Brand (Eds.), Theory and Practice of Model Transformation, 10374, 69–85. Springer International Publishing. DOI:10.1007/978-3-319-61473-1_5
Chaudhri, V., Baru, C., Chittar, N., Dong, X., Genesereth, M., Hendler, J., Kalyanpur, A., Lenat, D., Sequeda, J., Vrandečić, D., & Wang, K. (2022). Knowledge Graphs: Introduction, History and, Perspectives. AI Magazine, 43(1): 17-29. ‌https://doi.org/‌10.1002‌/aaai.12033
Chen, X., Jia, S., & Xiang, Y. (2020). A review: Knowledge reasoning over knowledge graph. Expert Systems with Applications, 141, 112948. DOI: https://doi.org/10.1016/j.eswa.2019.112948
Chen, Z. Y., Shang, Y., & Qian, D. M. (2018). Research on intelligent question answering system based on knowledge graph. Computer Applications and Software, 35(2): 178–182.
Chicaiza, J., & Reátegui, R. (2020). Using domain ontologies for text classification. A use case to classify computer science papers. In Knowledge Graphs and Semantic Web: Second Iberoamerican Conference and First Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26–27, 2020, Proceedings 2 (pp.166-180). Springer International Publishing.‏ DOI:10.1007/978-3-030-65384-2_13
Dalal, M. K., & Zaveri, M. A. (2011). Automatic text classification: A technical review. International Journal of Computer Applications, 28(2): 37–40. DOI:10.5120/3358-4633
Damerchiloo, M., & Hosseini Beheshti, M. S. (2021). Converting Thesaurus to Ontology (a Systematic Review). Library and Information Science Research11(2): 105-127. DOI: 10.22067/‌infosci.‌2021.23662.0. [In Persian]
Denecke, K. (2022). Does Enrichment of Clinical Texts by Ontology Concepts Increases Classification Accuracy? MEDINFO 2021: One World, One Health–Global Partnership for Digital Innovation, 290, 602–606. DOI: https://doi.org/10.3233/SHTI220148
Dos Santos, C. T., Quaresma, P., & Vieira, R. (2010). An API for multilingual ontology matching. In Proc. 7th conference on Language Resources and Evaluation Conference (LREC) (pp. 3830-3835). No commercial editor.URL: http://www.lrec-conf.org/proceedings/lrec2010/pdf/691_Paper.pdf
Dumitrescu, S. D., Trausan-Matu, S., Brut, M., & Sedes, F. (2013). Ontology-based flexible topic classification of crowdsourcing textual resources. Proceedings of the Fifth International Conference on Management of Emergent Digital EcoSystems (pp.145–151). DOI: https://doi.org/10.1145/2536146.2536172
Ehrlinger, L., & Wöß, W. (2016). Towards a definition of knowledge graphs. SEMANTICS (Posters, Demos, SuCCESS), 48(1-4): 2.‏ URL: https://ceur-ws.org/Vol-1695/paper4.pdf
Fensel, D., Horrocks, I., Van Harmelen, F., Decker, S., Erdmann, M., & Klein, M. (2000). OIL in a Nutshell, 1–16. DOI: https://doi.org/10.1007/3-540-39967-4_1
Fkih, F., & Omri, M. N. (2020). Hidden data states-based complex terminology extraction from textual web data model. Applied Intelligence, 50(6): 1813–1831. DOI: https://doi.org/10.1007/‌s10489-019-01568-4
Galkin, M., Auer, S., Vidal, M. E., & Scerri, S. (2017, April). Enterprise Knowledge Graphs: A Semantic Approach for Knowledge Management in the Next Generation of Enterprise Information Systems. Proceedings of the 19th International Conference on Enterprise Information Systems (pp.88–98). DOI: https://doi.org/‌10.5220/0006325200880098
Gomez-Perez, J. M., Pan, J. Z., Vetere, G., & Wu, H. (2017). Enterprise Knowledge Graph: An Introduction. In Exploiting Linked Data and Knowledge Graphs in Large Organisations, 1–14. Springer International Publishing. Doi: https://doi.org/10.1007/978-3-319-45654-6_1
Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge Creation Diffusion Utilization, 5(April): 199–220.URL: https://tomgruber.org/writing/ontolingua-kaj-1993.pdf
Guo, L., Yan, F., Li, T., Yang, T., & Lu, Y. (2022). An automatic method for constructing machining process knowledge base from knowledge graph. Robotics and Computer-Integrated Manufacturing, 731, 02222. DOI:10.1016/j.rcim.2021.102222
Habib, M. K. (2021). The challenges of Persian user-generated textual content: A machine learning-based approach. arXiv preprint, 2101.08087.‍ Doi: https://doi.org/10.48550/arXiv.2101.08087
HaCohen-Kerner, Y., Miller, D., & Yigal, Y. (2020). The influence of preprocessing on text classification using a bag-of-words representation. PloS one, 15(5): e0232525.‏ Doi: 10.1371/journal.pone.0232525
Hashemi, P., Khadivar, A., & Shamizanjani, M. (2018). Developing a domain ontology for knowledge management technologies. Online Information Review, 42(1): 28-44.‏ DOI:10.1108/OIR-07-2016-0177
Hashemi, S., & Horali, M. (2016). Category of Persian news in the field of defense using ontology. Second International Conference on Knowledge-Based Research in Computer Engineering and Information Technology: 1-15. [In Persian]
Homavandi, H., Fahimnia, F., Nakhoda, M., & Hoseini Beheshti, M. (2021). A study on ontology building methods: understanding of the features and requirements. Academic Librarianship and Information Research,54(1): 13-39. [In Persian]
Hosseini Pozveh, Z., Monadjemi, A., & Ahmadi, A. (2018). FNLP‐ONT: A feasible ontology for improving NLP tasks in Persian. Expert Systems, 35(4): e12282.‏ DOI:10.1111/exsy.12282
Hurlburt, G. F. (2021). The Knowledge Graph as an Ontological Framework. IT Professional, 23(4): 14-18.‏ DOI: 10.1109/‌MITP.2021.3086918
Issa, S., Adekunle, O., Hamdi, F., Cherfi, S.S.S., Dumontier, M., & Zaveri, A. (2021). Knowledge graph completeness: Asystematic literature review. IEEE Access, 9, 31322–31339. Doi: https://DOI.org/10.1109/ACCESS.2021.3056622
Joorabchi, A., & Mahdi, A. E. (2011). An unsupervised approach to automatic classification of scientific literature utilizing bibliographic metadata. Journal of Information Science, 37(5): 499–514. DOI: 10.1177/0165551511417785
Jung, Y., Ryu, J., Kim, K. M., & Myaeng, S. H. (2010). Automatic construction of a large-scale situation ontology by mining how-to instructions from the web. Web Semantics: Science, Services and Agents on the World Wide Web, 8(2-3): 110-124.‏ DOI: http://dx.doi.org/10.2139/ssrn.3199480
Kastrati, Z., Imran, A. S., & Yayilgan, S. Y. (2019). The impact of deep learning on document classification using semantically rich representations. Information Processing & Management, 56(5): 1618-1632.‏ DOI: https://doi.org/10.1016/j.ipm.2019.05.003
Khan, S. A., & Bhatti, R. (2012). Application of social media in marketing of library and information services: A case study from Pakistan. Webology, 9(1): 1-8.‏ URL: http://www.webology.org/2012/v9n1/a93.html
Khashabi, D., Cohan, A., Shakeri, S., Hosseini, P., Pezeshkpour, P., Alikhani, M., & Yaghoobzadeh, Y. (2021). Parsinlu: a suite of language understanding challenges for persian. Transactions of the Association for Computational Linguistics, 9,1147-1162.‏ DOI:10.1162/tacl_a_00419
Kilimci, Z. H., & Akyokus, S. (2019). The Evaluation of Word Embedding Models and Deep Learning Algorithms for Turkish Text Classification. 2019 4th International Conference on Computer Science and Engineering (UBMK) (pp.548–553). DOI: https://doi.org/10.1109/UBMK.2019.8907027
Krötzsch, M., & Thost, V. (2016). Ontologies for knowledge graphs: Breaking the rules. In The Semantic Web–ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan, Proceedings, Part I, 15, 76-392. Springer International Publishing.‏ DOI:10.1007/978-3-319-46523-4_23
Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent Convolutional Neural Networks for Text Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1). DOI: https://doi.org/10.1609/aaai.v29i1.9513
Lan, G., Li, Y., Hu, M., Sun, Y., & Zhang, Y. (2021). Knowledge Graph Integrated Graph Neural Networks for Chinese Medical Text Classification. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 682-687, IEEE.‍ DOI: 10.1109/BIBM52615.2021.9669286
Lee, Y. H., Tsao, W. J., & Chu, T. H. (2009). Use of ontology to support concept-based text categorization. In Designing E-Business Systems. Markets, Services, and Networks: 7th Workshop on E-Business, WEB 2008, Paris, France. Revised Selected Papers 7, 201-213, Springer Berlin Heidelberg.‏ DOI:10.1007/978-3-642-01256-3_17
Lee, Y. H., Hu, P. J. H., Tsao, W. J., & Li, L. (2021). Use of a domain-specific ontology to support automated document categorization at the concept level: Method development and evaluation. Expert Systems with Applications, 174, 114681. DOI: https://doi.org/10.1016/j.eswa.2021.114681
Lei, X., Cai, Y., Xu, J., Ren, D., Li, Q., & Leung, H. F. (2019). Incorporating task-oriented representation in text classification. In Database Systems for Advanced Applications: 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, Proceedings, Part II 24, 401-415.Springer International Publishing.‏ https://doi.org/10.1007/978-3-030-18579-4_24
Li, L., Zhang, Z., & Zhang, S. (2021). Knowledge graph entity similarity calculation under active learning. Complexity, 2021, 1-11.‏ Doi: https://doi.org/10.1155/2021/3522609
Li, S., Chen, L., Song, C., & Liu, X. (2024). Text Classification Based on Knowledge Graphs and Improved Attention Mechanism. arXiv preprint, 2401.03591.‏ DOI:
https://doi.org/10.48550/arXiv.2401.03591
Li, Y., Wei, B., Yao, L., Chen, H., & Li, Z. (2017). Knowledge-based document embedding for cross-domain text classification. In 2017 International Joint Conference on Neural Networks (IJCNN), 1395-1402. IEEE.‏ DOI: 10.1109/IJCNN.2017.7966016
Lili, D., Jiong, C., Xiang, Z., & Na, Y. E. (2020). Research on disease diagnosis method combining knowledge graph and deep learning. Journal of Frontiers of Computer Science and Technology, 14(5): 815. URL: https://arxiv.org/pdf/2305.00359.pdf
Lu, H., Zhengtao, Y., Jinhui, D., Cheng, Z., Cunli, M., & Jianyi, G.2008. The effects of domain knowledge relations on domain text classification. In 2008 27th Chinese Control Conference, 460-463. IEEE.‏ DOI: 10.1109/CHICC.2008.4605079
Ma, Z., Cheng, H., & Yan, L. (2019). Automatic construction of OWL ontologies from Petri nets. International Journal on Semantic Web and Information Systems (IJSWIS), 15(1): 21-51.‍ DOI: 10.4018/IJSWIS.2019010102
Madani, S. (2011). Classification of Persian documents with the help of Fars Net ontology. Master thesis, Shahrood University of Technology. [In Persian]
Mali, M., & Atique, M. (2021). The Relevance of Preprocessing in Text Classification. in Proceedings of Integrated Intelligence Enable Networks and Computing, in Algorithms for Intelligent Systems. Singapore: Springer, 553–559. DOI: 10.1007/978-981-33-6307-6_55.
Malik, S., & Jain, S. (2021). Semantic Ontology-Based Approach to Enhance Text Classification. ISIC, 85–98. URL: http://star.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-2786/Paper16.pdf
Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., &d Gao, J. (2020). Deep Learning Based Text Classification: A Comprehensive Review. ACM Computing Surveys (CSUR), 54(3): 1–40. DOI: https://doi.org/10.48550/arXiv.2004.03705
Mohammadi Ostani, M., Azargoon, M., & Cheshmesohrabi, M. (2018). Methodology of Construction and Design of Ontologies: a Case Study of Scientometrics Field. Iranian Journal of Information Processing and Management33(4): 1761-1788. DOI: 10.35050/JIPM010.2018.033. [In Persian]
Mumivand, H., Piri, R., S., & Kheiraei, F. (2021). A New Model for Automatic Text Classification. Electrical Science and Engineering, 3(1): 37–40. DOI: https://doi.org/10.30564/ese.v3i1.3170
Nguyen, D. N., Phan, T. T., & Do, P. (2021). Embedding knowledge on ontology into the corpus by topic to improve the performance of deep learning methods in sentiment analysis. Scientific Reports, 11(1): 23541. DOI: https://doi.org/10.1038/s41598-021-03011-6
Nguyen, N. T., Gabud, R. S., & Ananiadou, S. (2019). COPIOUS: A gold standard corpus of named entities towards extracting species occurrence from biodiversity literature. Biodiversity data journal, (7). ‏ DOI: 10.3897/BDJ.7.e29626
Novaković, J. D., Veljović, A., Ilić, S. S., Papić, Ž., and Tomović, M. (2017). Evaluation of classification models in machine learning. Theory and Applications of Mathematics and Computer Science 7(1): 39.URL: https://typeset.io/pdf/evaluation-of-classification-models-in-machine-learning-1u2pog86m5.pdf
Pan, X. (2015). A context-based free text interpreter / A Context-Based Free Text Interpreter. [PhD Thesis, California Polytechnic State University]. http://eil.stanford.edu/xpan/CFTI-Paper.pdf
Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner’s approach. Sebastopol: O’Reilly Media.
Perez, Z. G., Zafar, M. A., Ziganshin, B. A., & Elefteriades, J. A. (2022). Toward standard abbreviations and acronyms for use in articles on aortic disease. JTCVS open, 10, 34-38.‏ https://doi.org/10.1016/‍j.xjon.2022.04.010
Qian, L., Hao, P., Jianxin, L., Congying, X., Renyu, Y., Lichao, S., Philip, S. Y., & Lifang, H. (2021). A Survey on Text Classification: From Traditional to Deep Learning. ACM Trans. Intell. Syst. Technol, 37(4): 39. DOI: https://arxiv.org/pdf/2008.00364.pdf
Ramezani, H., Alipour-Hafezi, M., & Momeni, E. (2014). Scientific Maps: Methods and Techniques. Popularization of Science5(1): 53-84. [In Persian]
Ren, X., El-Kishky, A., Wang, C., & Han, J. (2015, August). Automatic Entity Recognition and Typing from Massive Text Corpora: A Phrase and Network Mining Approach. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2319-2320. https://doi.org/10.1145/‍2783258.2789988
Reyhani-Arani, E., & Lajardi, M. R. (2015, Aug). Investigating methods of automatic classification of textual documents. National Conference on Electricity and Computer, Distributed Systems and Smart Networks, 3.URL: https://www.sid.ir/fa/seminar/‍ViewPaper.aspx?ID=80521[In Persian]
Rozeva, A. (2012). Classification of text documents supervised by domain ontologies. Applied Innovations and Technologies, 8(3): 1-12.‏ Doi:10.15208/ati.2012.11
Sajadi, M. B., & Minaei Bidgoli, B. (2020). The Architecture of Farsi Knowledge Graph System. Iranian Journal of Information Processing and Management, 35(2): 425-462.‍ DOI: 10.35050/JIPM010.2020.057
Shan, G., Foulds, J., & Pan, S. (2020). Causal feature selection with dimension reduction for interpretable text classification. arXiv preprint, 2010.04609.‏ https://doi.org/10.48550/arXiv.2010.04609
Shin, J., wu, S., Wang, feiran, De Sa, C., Zhang, C., & Re, C. (2015). Incremental knowledge base construction using deepdive. Proceedins of the VLDB Endowment International Conference on Very Large Data Base, 8, 1310. DOI:10.14778/2809974.2809991
Shirmardi, F., Hosseini, S. M. H., & Momtazi, S. (2021). FarsWikiKG: an Automatically Constructed Knowledge Graph for Persian. International Journal of Web Research, 4(2): 25-30.‏ DOI: 10.22133/IJWR.2022.337760.1112
Sinoara, R. A., Camacho-Collados, J., Rossi, R. G., Navigli, R., & Rezende, S. O. (2019). Knowledge-enhanced document embeddings for text classification. Knowledge-Based Systems, 163, 955-971.‏ https://doi.org/10.1016/j.knosys.2018.10.026
Soleimani Nezhad, A., Salajegheh, M., & Tayyebi Nia, E. (2019). Clustering scientific articles based on the k_means algorithm Case Study: Iranian Research Institute for information Science and Technology (IranDoc). Iranian Journal of Information Processing and Management, 34(2): 871-896. DOI: 10.35050/JIPM010.2019.060. [In Persian]
Song, M. H., Lim, S. Y., Kang, D. J., & Lee, S. J. (2005). Automatic classification of web pages based on the concept of domain ontology. 12th Asia-Pacific Software Engineering Conference. DOI: 10.1109/APSEC.2005.46
Song, X., Bai, L., Liu, R., & Zhang, H. (2022). Temporal Knowledge Graph Entity Alignment via Representation Learning. In International Conference on Database Systems for Advanced Applications, 391-406, Cham: Springer International Publishing.‍ DOI: https://doi.org/10.1007/978-3-031-00126-0_30
Sotoudeh, H. & Honarjoyan, Z. (2012). An overview of the difficulties of the Persian language in the digital environment and their effects on the effectiveness of automatic text processing and information retrieval. Library and Information Sciences15(4): 59-92. [In Persian]
Sun, K., Liu, Y., Guo, Z., & Wang, C. (2016). Visualization for knowledge graph based on education data. International Journal of Software and Informatics, 10(3): 1-13.‍ DOI: 10.1145/2968220.2968227
Sun, M., Guo, Z., & Deng, X. (2021). Intelligent BERT-BiLSTM-CRF Based Legal Case Entity Recognition Method. In Proceedings of the ACM Turing Award Celebration Conference-China. 186-191. DOI: 10.1145/3472634.3474069
Suneera, C. M., & Prakash, J. (2020). Performance Analysis of Machine Learning and Deep Learning Models for Text Classification. In 2020 IEEE 17th India Council International Conference (INDICON), 1–6. DOI:https://doi.org/10.1109/INDICON49873.2020.9342208
Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classification. Information Processing and Management, 50(1): 104–112. DOI: https://doi.org/10.1016/j.ipm.2013.08.006
Varga, A. (2014). Exploiting domain knowledge for cross-domain text classification in heterogeneous data sources. [Doctoral dissertation, University of Sheffield] ‏
Wasi, S., Sachan, M., & Darbari, M. (2020). Document classification using wikidata properties. In Information and Communication Technology for Sustainable Development: Proceedings of ICT4SD 2018,729-737. Springer Singapore.‍ DOI: 10.1007/978-981-13-7166-0_73
Wei, F., Qin, H., Ye, S., & Zhao, H. (2019). Empirical Study of Deep Learning for Text Classification in Legal Document Review. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 3317–3320. DOI: https://doi.org/10.1109/BigData.2018.8622157
Wijewickrema, C. M. (2015). Impact of an ontology for automatic text classification. Annals of Library and Information Studies (ALIS), 61(4): 263-272.‍ DOI: http://nopr.niscair.res.in/bitstream/123456789/30334/1/ALIS%2061(4)%20263-272.pdf
Xu, P., & Sarikaya, R. (2014, May). Contextual domain classification in spoken language understanding systems using recurrent neural network. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),136-140. IEEE.‏ DOI: 10.1109/ICASSP.2014.6853573
Yahya, M., Breslin, J. G., & Ali, M. I. (2021). Semantic web and knowledge graphs for industry 4.0. Applied Sciences, 11(11): 5110.‍ DOI: https://doi.org/10.3390/app11115110
Yousif, S. A., Sultani, Z. N., & Samawi, V. W. (2019). Utilizing Arabic WordNet Relations in Arabic Text Classification: New Feature Selection Methods. IAENG International Journal of Computer Science, 46(4): 750-761.
Zhang, R., Trisedya, B. D., Li, M., Jiang, Y., & Qi, J. (2022). A benchmark and comprehensive survey on knowledge graph entity alignment via representation learning. The VLDB Journal, 31(5): 1143-1168.‏ DOI: https://doi.org/10.48550/arXiv.2103.15059
Zhang, W., & Xu, C. (2020). Microblog Text Classification System Based on TextCNN and LSA Model. 2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT), 469–474. DOI:https://doi.org/10.1109/ISCTT51595.2020.00090
Zhou, P., & El-Gohary, N. (2016). Ontology-based multilabel text classification of construction regulatory documents. Journal of Computing in Civil Engineering, 30(4): 04015058.‍ DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000530
CAPTCHA Image