Stopping Information Search: A Systematic Review

Document Type : Research َ Article

Authors

1 PhD Student, Department of Knowledge and Information Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran

2 Associate Professor, Department of Knowledge and Information Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran

3 Professor, Department of Knowledge and Information Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran

4 Assistant Professor, Department of Knowledge and Information Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran

Abstract

Purpose: The purpose of this study was to systematically examine dimensions, aspects, and levels of search stopping in the literature in order to identify gaps in the field.
Methods: Research reports on the subject published between 1961-2020 were identified in databases. The contents of 60 studies found were thematically analysed in terms of basic, organizing, and comprehensive concepts.
Findings: The reviewed studies have identified two stopping levels, namely session-level stopping and query-level/ result- summary- level stopping. At the latter level, the search session does not stop permanently, but the user continues searching after refining the query. The studies also referred to another stopping method labeled as “search- engine- result- page- level stopping” in which the user leaves the result page without clicking on any result after making a general inference of the search results. Then, the user may or may not continue searching after refining the query. Here, we are not dealing with another level of stopping, but only the time of making decision to stop is changed. Most of the 60 studies we identified dealt with session-level stopping. Identifying stopping rules, examining the application of stopping rules in various contexts, identifying the factors affecting search stopping or query stopping, checking search- engine- result- page- level stopping, examining the depth of users' search, distinguishing between stopping due to satisfaction or frustration, and exploring search stopping signs were dimensions of search stopping studied in the literature.  Stopping rules included satisfaction and frustration, magnitude threshold, difference threshold, representational stability, mental list, and single criterion. Also, factors affecting stopping search included time constraints, search task structure, information scent, user interface features, importance of the task to the users, motivation, domain knowledge, interest in the topic, need for closure and need for cognition.
Conclusion: Our review showed that studies each dealt with some specific aspect(s) of search stopping behavior and sought to identify the rules or factors affecting it. Research gaps we identified include not investigating the impact of variables such as search language, task difficulty, and individual differences on stopping behavior, the detailed differentiation of the signs of good abandonment from bad ones, and the use of eye tracking technology and recording electrical activity of the brain (Electroencephalography) to better understand the stopping behavior.

Keywords

Main Subjects


 
ابراهیمی، سعیده (1387). الگوریتم بازیابی و رتبه‌بندی اطلاعات در موتور جستجوی گوگل. فصلنامة کتاب، ۱۹(۲)، 40-31.
اسدی، مریم (1393). تحلیل رفتار فرمول‌بندی مجدد عبارت جستجوی کاربران در محیط وب با تأکید بر سبک‌های شناختی کلی‌نگر و جزئی‌نگر، تجربه وب و وظیفه جستجو. تعامل انسان و اطلاعات، 1(3): 191-203.
ذاکر شهرک، مینا (1387). فرایند جستجو: رفتار اطلاع‌یابی کاربران و نظام‌های بازیابی اطلاعات. اطلاع‌یابی و اطلاع‌رسانی. 2(15)، ۳۳-۴۱.
ری‌بد، آرمان (1399). فرایند پواسون و توزیع آن ـ مفاهیم و کاربردها. بازیابی‌ 25 مهر، 1400، از https://blog.faradars.org/poisson-process-and-distribution/
References
Abugabah, A. (2014). User Characteristics of Information Systems: Do They Really Matter?. Journal of information & systems management, 14(3), 95-104.
Agosto, D. E. (2002). Bounded rationality and satisficing in young people’s Web‐based decision making. Journal of the American society for Information Science and Technology53(1), 16-27.
Al-Maskari, A., & Sanderson, M. (2011). The effect of user characteristics on search effectiveness in information retrieval. Information Processing & Management47(5), 719-729.
Tride-Stirling, J. (2001). Thematic networks: an analytic tool for qualitative research. Qualitative research1(3), 385-405.
Aula, A., Khan, R. M., & Guan, Z. (2010). How does search behavior change as search becomes more difficult? In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 35-44).
Azzopardi, L., Kelly, D., & Brennan, K. (2013). How query cost affects search behavior. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval (pp. 23-32).
Berryman, J. (2006). What defines “enough” information? How policy workers make judgements and decisions during inf. seeking: preliminary results from an exploratory study. Information research, 11(4).
Berryman, J. M. (2008). Judgements during information seeking: a naturalistic approach to understanding the assessment of enough information. Journal of information. science,34(2), 196-206.
Bouzdine-Chameeva, T., Browne, G. J., & Durrieu, F. (2006). Stopping Rules in Information Search In Online Wine Purchasing Decisions (No. 111-06). Working paper. CEREBEM.
Brazier, D., & Harvey, M. (2017, April). E-government and the digital divide: A study of English-as-a-second-language users’ information behaviour. In European Conference on Information Retrieval (pp. 266-277). Springer, Cham.
Browne, G. J., & Pitts, M. G. (2004). Stopping rule use during information search in design problems. Organizational Behavior and Human Decision Processes95(2), 208-224.
Browne, G. J., Pitts, M. G., & Wetherbe, J. C. (2005, January). Stopping rule use during web-based search. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 271b-271b). IEEE.
Browne, G. J., Pitts, M. G., & Wetherbe, J. C. (2007). Cognitive stopping rules for terminating information search in online tasks. MIS quarterly, 89-104.
Browne, G. J., & Walden, E. A. (2013, June). Stopping Information Search: A NeuroIS Investigation. In proceedings of Gmunden Retreat on NeuroIS (p. 12).
Busemeyer, J. R., & Rapoport, A. (1988). Psychological models of deferred decision making. Journal of Mathematical Psychology32(2), 91-134.
Card, S. K., Pirolli, P., Van Der Wege, M., Morrison, J. B., Reeder, R. W., Schraedley, P. K., & Boshart, J. (2001). Information scent as a driver of Web behavior graphs: results of a protocol analysis method for Web usability. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 498-505).
Chi, E. H., Pirolli, P., Chen, K., and Pitkow, J. (2001). Using information scent to model user
Information. needs and actions and the web. In Proceedings of the 19th ACM CHI 2001, )pp. 490–497(.
 
Chu, P., Komlodi, A., & Rózsa, G. (2015). Online search in English as a non‐native language. Proceedings of the Association for Information Science and Technology52(1), 1-9.
Chuklin, A., & Serdyukov, P. (2012, April). Potential good abandonment prediction. In Proceedings of the 21st International Conference on World Wide Web (pp. 485-486).
Cooper, W. S. (1973). On selecting a measure of retrieval effectiveness part ii. Implementation of the philosophy. Journal of the American Society for Information Science, 24(6):413–424.
 
Courtois, M. P., & Berry, M. W. (1999). Results ranking in Web search engines. Online23(3), 39-45.
Crescenzi, A. M. C. (2019). Adaptation in information search and decision-making under time pressure (Doctoral dissertation, The University of North Carolina at Chapel Hill).
Cutrell, E., & Guan, Z. (2007). What are you looking for? An eye-tracking study of information usage in web search. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 407-416).
Diriye, A., White, R., Buscher, G., & Dumais, S. (2012). Leaving so soon? Understanding and predicting web search abandonment rationales. In Proceedings of the 21st ACM international conference on Information and knowledge management (pp. 1025-1034).
Dostert, M. (2011). Does domain knowledge influence search stopping behavior?. Proceedings of the American Society for Information Science and Technology48(1), 1-2.
Dostert, M., & Kelly, D. (2009, July). Users’ stopping behaviors and estimates of recall. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 820-821).
Ebrahimi, S. (2008). Google Information retrieval and ranking algorithm. Book Quarterly. 19(2), 31-40. [In Persian]
Elliott, J. M. (2020). A Multiple Case Study of Stopping Decisions in Episodes of Self-Directed Leisure Learning (Doctoral dissertation, Grand Canyon University).
Gerhart, N. (2018). Generalizing stopping rule research: Development of scales. Journal of Computer Information Systems. 60(1), 93-100.
Gerhart, N., & Windsor, J. (2017). Cognitive stopping rules in a new online reality. AIS Transactions on replication research, 3(1), 1-9.
Gwizdka, J., & Spence, I. (2006). What can searching behavior tell us about the difficulty of information tasks? A study of Web navigation. Proceedings of the American Society for Information Science and Technology43(1), 1-22.
Hansen, P., & Karlgren, J. (2005). Effects of foreign language and task scenario on relevance assessment. Journal of Documentation, 61(5), 623-639.
Hölscher, C., & Strube, G. (2000). Web search behavior of Internet experts and newbies. Computer networks33(1-6), 337-346.
Huang, J., White, R. W., & Dumais, S. (2011). No clicks, no problem: using cursor movements to understand and improve search. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1225-1234).
Kantor, P. B. (1987). A model for the stopping behavior of users of online systems. Journal of the American Society for Information Science38(3), 211-214.
Kim, K. S. (2001). Information-seeking on the Web: Effects of user and task variables. Library & Information Science Research23(3), 233-255.
Kim, K. S. (2008). Effects of emotion control and task on web searching behavior. Information Processing & Management44(1), 373-385.
Kinley, K., Tjondronegoro, D., Partridge, H., & Edwards, S. (2012). Human-computer interaction: the impact of users' cognitive styles on query reformulation behaviour during web searching. In Proceedings of the 24th Australian Computer-Human Interaction Conference (pp. 299-307).
Klewitz, J., & Hansen, E. G. (2014). Sustainability-oriented innovation of SMEs: a systematic review. Journal of cleaner production65, 57-75.
Kogut, C. A. (1990). Consumer search behavior and sunk costs. Journal of Economic Behavior & Organization14(3), 381-392.
Korthauer, R. D., & Koubek, R. J. (1994). An empirical evaluation of knowledge, cognitive style, and structure upon the performance of a hypertext task. International Journal of Human‐Computer Interaction6(4), 373-390.
Kraft, D. H., & Lee, T. (1979). Stopping rules and their effect on expected search length. Information Processing and Management, 15(1), 47-54.
Kraft, D. H., & Waller, W.G. (1981). A Bayesian approach to user stopping rules for information retrieval systems. Information Processing and Management, 17(6), 349-360.
Kruglanski, A. W. (1989). Lay epistemics and human knowledge: Cognitive and motivational bases. New York, USA.
Kuhlthau, C. C. (2004). Seeking meaning: A process approach to library and information services (2nd edition). Westport, CT: Libraries Unlimited.
Lagun, D., Hsieh, C. H., Webster, D., & Navalpakkam, V. (2014, July). Towards better measurement of attention and satisfaction in mobile search. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (pp. 113-122).
Li, J., Huffman, S., & Tokuda, A. (2009, July). Good abandonment in mobile and PC internet search. In Proceedings of the 32nd international ACM SIGIR conference on Research and development.
Li, Y., Bao, Z., Li, G., & Tan, K. L. (2015). Real time personalized search on social networks. In 2015 IEEE 31st International Conference on Data Engineering (pp. 639-650). IEEE.
Li, Y., & Capra, R. (2020). Exploring factors affecting renewal and stopping reasons in cross‐session search. Proceedings of the Association for Information Science and Technology57(1), e267.
Lippman, S. A., & McCall, J. J. (1976). The economics of job search: A survey. Economic inquiry14(2), 155-189.
Liu, C. (2019). Examination of online information. search stopping behaviors and stopping rules by task type. Proceedings of the Association for Information, Science and Technology, 56(1), 631-633.
Liu, C., Gwizdka, J., Liu, J., Xu, T., & Belkin, N. J. (2010). Analysis and evaluation of query reformulations in different task types. Proceedings of the American Society for Information Science and Technology47(1), 1-9.
Lorigo, L., Haridasan, M., Brynjarsdóttir, H., Xia, L., Joachims, T., Gay, Gura Granka, Pellacini, F, Granka, L, & Pan, B. (2008). Eye tracking and online search: Lessons learned and challenges ahead. Journal of the American Society for Information Science and Technology59(7), 1041-1052.
Mansourian, Y., & Ford, N. (2007). Search persistence and failure on the web: a “bounded rationality” and “satisficing” analysis. Journal of Documentation, 63(5), 680-701.
March, J. G. (1994). Primer on decision making: How decisions happen. Simon and Schuster.
Marchionini, G. (1995). Information Seeking in Electronic Environments (Cambridge Series on Human-Computer Interaction). Cambridge University Press.
Maxwell, D. M. (2019). Modelling search and stopping in interactive information retrieval (Doctoral dissertation, University of Glasgow).
Maxwell, D., & Azzopardi, L. (2018). Information scent, searching and stopping. In European Conference on Information Retrieval (pp. 210-222). Springer, Cham.
Maxwell, D., Azzopardi, L., Jarvelin, K., Keskustalo, H. (2015a). An initial investigation into fixed and adaptive stopping strategies. In Proc. 38th ACM SIGIR, pages 903–906.
Maxwell, D., Azzopardi, L., Järvelin, K., & Keskustalo, H. (2015). Searching and stopping: An analysis of stopping rules and strategies. In Proceedings of the 24th ACM international on conference on information and knowledge management (pp. 313-322).‏
Maxwell, D., Azzopardi, L., & Moshfeghi, Y. (2019). The impact of result diversification on search behaviour and performance. Information Retrieval Journal22(5), 422-446.
Merli, R., Preziosi, M., & Acampora, A. (2018). How do scholars approach the circular economy? A systematic literature review. Journal of Cleaner Production178, 703-722.
Morehead, D. R. & Rouse, W. B. (1982). Models of human behavior in information seeking tasks. Information Processing and Management, 18(4), 193-205.
Morrison, J. B., Pirolli, P., & Card, S. K. (2001). In A taxonomic analysis of what world wide Web activities significantly impact people’s decisions and actions (p. 163). Paper presented at the conference on human factors in computing systems, 31 March–05 April, Seattle, Washington.
Nickles, K. R. (1995). Judgment-based and reasoning-based stopping rules in decision making under uncertainty. PhD thesis, University of Minnesota.
Nickles, K. R. (1995). Judgment-based and reasoning-based stopping rules in decision-making under uncertainty. University of Minnesota.‏
Ong, K., Järvelin, K., Sanderson, M., & Scholer, F. (2017). Using information scent to understand mobile and desktop web search behavior. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 295-304).
Pennington, R. R., & Kelton, A.S. (2016). How much is enough? An investigation of nonprofessional investors informatio search and stopping rule use. International Journal of Accounting Information systems, 21, 47-62.
Pitts, M. G., & Browne, G. J. (2004). Stopping behavior of systems analysts during information requirements elicitation. Journal of management information systems21(1), 203-226.
Pitz, G. F., Reinhold, H., & Geller, E. S. (1969). Strategies of information seeking in deferred decision making. Organizational Behavior and Human Performance4(1), 1-19.
Prabha, C., Connaway, L. S., Olszewski, L., & Jenkins, L. R. (2007). What is enough? Satisficing information needs. Journal of documentation, 63(1), 74-89.
Rayner, K. (1998). Eye movement in reading and information processing: 20 years of research. Psychological Bulletins, 124(3): 372–422.
Reybod, A. (2020). Poisson process and distribution-concepts and usage. Retrieved on 2021 october 7.2021 from https://blog.faradars.org/poisson-process-and-distribution/ [In Persian]
Scaria, A. T., Philip, R. M., West, R., & Leskovec, J. (2014, February). The last click: Why users give up information network navigation. In Proceedings of the 7th ACM international conference on Web search and data mining (pp. 213-222).
Seuring, S., Müller, M., Westhaus, M., & Morana, R. (2005). Conducting a literature review—the example of sustainability in supply chains. Research methodologies in supply chain management: in Collaboration with Magnus Westhaus, 91-106.
Simon, H. A. (1997). Models of bounded rationality: Empirically grounded economic reason (Vol. 3). MIT press.
Sneyd, A., & Stevenson, M. (2019). Modelling Stopping Criteria for Search Results using Poisson Processes. arXiv preprint arXiv:1909.06239.
Song, Y., Shi, X., White, R., & Awadallah, A. H. (2014). Context-aware web search abandonment prediction. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (pp. 93-102).
Stamou, S., & Efthimiadis, E. N. (2009). Queries without clicks: Successful or failed searches. In SIGIR 2009 Workshop on the Future of IR Evaluation (pp. 13-14).
Stamou, S., & Efthimiadis, E. N. (2010). Interpreting user inactivity on search results. In European Conference on Information Retrieval (pp. 100-113). Springer, Berlin, Heidelberg.
Stigler, G. J. (1961). The economics of information. Journal of political economy69(3), 213-225.
Toms, E. G., & Freund, L. (2009). Predicting stopping behavior: A preliminary analysis. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 750-751).
Tseng, L. C. J., Tjondronegoro, D., & Spink, A. (2009, December). Analyzing web multimedia query reformulation behavior. In Proc. the 14th Australasian Document Computing Symposium, University of New South Wales, Sydney, NSW (pp. 118-125).‏
Williams, K., Kiseleva, J., Crook, A. C., Zitouni, I., Awadallah, A. H., & Khabsa, M. (2016). Detecting good abandonment in mobile search. In Proceedings of the 25th International Conference on World Wide Web (pp. 495-505).
Wu, W.C. (2012). How far will you go? Using need for closure and info. scent to model search stopping behavior. In Proceeding of the 4th Info. Interaction in Context Symp. (p. 328).
 
Wu, W. C. (2014). How far will you go? Characterizing online search stopping behaviors using information scent and need for cognition (Doctoral dissertation, The University of North Carolina at Chapel Hill).‏
Wu, W. C., & Kelly, D. (2014). Online search stopping behaviors: An investigation of query abandonment and task stopping. Proceedings of the American Society for Information Science and Technology51(1), 1-10.
Wu, W. C., Kelly, D., & Sud, A. (2014). Using information scent and need for cognition to understand online search behavior. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (pp. 557-566).
Zach, L. (2005). When is ˈenoughˈ enough? Modeling the information- seeking and stopping behavior of senior arts administrators. Journal of the American Society for Information. Science, 56(1), 23-35.
Zaker-shahrak, M. (2008). Information search process: users information seeking and information retrieval systems. Information seeking and information science, 2(15), 33-41. [In Persian]
CAPTCHA Image