The Efficiency of Language Field for Retrieving Farsi and Arabic Results in Search Engines (Comparative Study: Google, Bing, & Yahoo)

Document Type : Research َ Article

Authors

Abstract

Purpose: To investigate the efficiency of the language restriction feature in Google, Bing and Yahoo search engines and to determine the most efficient search engine in retrieving relevant results in Farsi and Arabic.
Methodology: A survey on a sample of 38 homonyms with different meanings in Farsi and Arabic.
Results: Google search engine showed a lower performance compared to the other two search engines in terms of the number of results retrieved and ranking the relevant results to the target language. There was no significant difference among the three search engines in retrieving irrelevant results to the target language. However, a significant difference was seen among Google and the other search engines in ranking the irrelevant results to the target language. Also, no relationship was found between the performance of the search engines in retrieving irrelevant results to the target language and traffic and popularity of irrelevant pages.
Conclusion: Those using the language restriction feature for Farsi and Arabic are more likely to see relevant results in Yahoo and Bing search engines.

Keywords


دری، راحله (1393). مقایسه و ارزیابی موتورهای جستجوی معنایی. پژوهشنامه پردازش و مدیریت اطلاعات، 30 (2)، 467-487.
رجبی، منصور؛ نوروزی، یعقوب (1394). موتورهای جستجوی فارسی: ارزیابی امکانات جستجو، بازیابی اطلاعات، میزان جامعیت و مانعیت و تعیین همپوشانی میان آنها. مطالعات ملی کتابداری و سازماندهی اطلاعات، 26 (3)، 133-150.
شریف، عاطفه (1391). بررسی تغییرات عملکرد دو موتور کاوش عمومی یاهو و گوگل از نظر پوشش کمّی-زمانی نمایه‌سازی و توجه به عناصر ابرداده‌ای در رتبه‌بندی صفحه‌های وب. پژوهش‌نامهکتابداریواطلاع‌رسانی، 2 (1)، 175-194.
محمداسمعیل، صدیقه؛ منصور کیایی، ربابه (1390). مقایسه موتورها و ابرموتورهای کاوش عمومی در بازیابی اطلاعات علم فیزیک و میزان همپوشانی آنها. مطالعات ملی کتابداری و سازماندهی اطلاعات، 22 (3)، 130-140.
Cavnar, W. B., & Trenkle, J. M. (1994). N-gram-based text categorization. Paper presented at the third Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, Nevada, USA, April 11-13. Available July 5, 2015, from https://s3.amazonaws.com/academia.edu.documents/ 6397498/10.1.1.21.3248.pdf?AWSAccessKeyId= AKIAIWOWYYGZ2Y53UL3A&Expires=1502139164&Signature=qGsY8DhiWbcpjMZsgZmhs3ygaHs%3D&response-content-disposition=inline%3B%20filename%3DN-gram-based_text_categorization.pdf
Dunning, T. (1994). Statistical identification of language, Technical Report (MCCS 94-273). New Mexico State University: New Mexico.
Kaushik, A. (2012). Judging the capability of search engines and search terms. International Journal of Information Dissemination and Technology, 2 (1), 6-11.
Fattahi, R., Wilson, C. S., & Cole, F. (2008). An alternative approach to natural language query expansion in search engines: Text analysis of non-topical terms in web documents. Information Processing & Management, 44 (4), 1503-1516.
Ghani, R., Jones, R., & Mladenic, D. (2005). Building minority language corpora by learning to generate web search queries. Knowledge and Information Systems, 7 (1), 56–83.
Kim, J. Y., Feild, H., & Cartright, M. (2012, October). Understanding book search behavior on the web. In Proceedings of the 21st ACM international conference on Information and knowledge management (pp. 744-753). ACM. October 29 - November 02.
Lewandowski, D. (2004). Date-restricted queries in web search engines. Online Information Review, 28 (6), 420-427.
Lewandowski, D. (2008) .Problems with the use of web search engines to find results in foreign languages. Online Information Review, 32 (5), 668 - 672.
Lewandowski, D., & Höchstötter, N. (2008). Web searching: a quality measurement perspective (pp. 309-340). Springer Berlin Heidelberg. Available July 5, 2015, from https://link.springer.com/chapter/10.1007/978-3-540-75829-7_16
Martins, B., & Silva, M. J. (2005, March). Language identification in web pages. In Proceedings of the 2005 ACM symposium on Applied computing (pp. 764-768). ACM. March 13 – 17. Available July 5, 2015, from http://dl.acm.org/citation.cfm?id=1066852
Sroka, M. (2000). Web search engines for polish information retrieval: Questions of search capabilities and retrieval performance. International Information & Library Research, 32 (2), 87-98.
Zhang, J., & Lin, S. (2007). Multiple language supports in search engines. Online Information Review, 31 (4), 516-532.
Zhang, J., Fei, W., & Le, T. (2013). A comparative analysis of the search feature effectiveness of the major English and Chinese search engines. Online Information Review, 37 (2), 217-230.
CAPTCHA Image