بازیابی اطلاعات جغرافیایی در محیط وب: مروری بر نوشته‌ها و ترسیم مدل مفهومی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای علم اطلاعات و دانش‌شناسی، پژوهشگاه علوم و فناوری اطلاعات ایران (ایرانداک)

2 استادیار گروه علم اطلاعات و دانش‌شناسی، دانشگاه شاهد

چکیده

هدف:ارائه مدل مفهومی برای بازیابی اطلاعات جغرافیایی.
روش/ رویکرد پژوهش: از طریق مطالعه منابع مرتبط با حوزه بازیابی اطلاعات جغرافیایی، الگوی رایج شناسایی و سپس طراحی مدل مفهومی معماری نظام بازیابی اطلاعات مکانی انجام شد.
یافتهها: تاکنون سه رویکرد اصلی برای بازیابی اطلاعات جغرافیایی شامل مدل‌های الگو-محور، مبتنی بر هستی‌شناسی، و ماشین‌آموز پیشنهاد شده است. استفاده از یک پایگاه جاینامه‌ای یا یک پایگاه دانش اطلاعات جغرافیایی یکی از ملزوماتی است که بسیاری از روش‌های بازیابی اطلاعات جغرافیایی نیازمند آن هستند. رابط کاربری و رتبه‌بندی نیز از مسائل مهمی است که در طراحی نظام بازیابی اطلاعات جغرافیایی باید مورد توجه قرار گیرند.
نتیجه‌گیری: نوع‌شناسی روش‌های بازیابی اطلاعات جغرافیایی می‌تواند به مطالعه نظام‌مند این حوزه کمک کند. همچنین، مدل مفهومی ارائه‌شده می‌تواند برای طراحی موتورجستجوی بازیابی اطلاعات جغرافیایی استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Web Geographic Information Retrieval: Literature Review and Conceptual Model

نویسندگان [English]

  • B. Rasuli 1
  • S. Asadi 2
1
2
چکیده [English]

Purpose – The purpose of this paper is to provide a conceptual model as a tool for Geographic Information Retrieval (GIR). Furthermore, the paper seeks to Identify and introduce current approaches on GIR, as well as, provides a lens to study GIR field.
Design/methodology/approach – Through a library-based study and a systematic literature review the conceptual model drawn from GIR literature.
Findings – Approaches on GIR could be divided into three categories, included, pattern-based models, ontology-based models, and machine learning models. The most of the GIR methods need for a gazetteer database or a geographic knowledge base to work properly. Although, interface and result ranking are crucial parts a GIR system that should be considered at the design step.
Originality/value – This paper is one of the first studies to seek a general review on GIR. Furthermore, the provided conceptual model is another value of this paper. As well as, the typology introduced by the paper assists researchers by providing a tool for systematic analysis of GIR.
Practical implications – Using the provided conceptual model, a GIR system – such as a search engine – could be designed.

کلیدواژه‌ها [English]

  • Information Retrieval Systems
  • Spatial Information
  • Geographic Information
  • Conceptual Model
  • Geographic Information Retrieval
اسدی، سعید (1389). کاربرد سامانه اطلاعات جغرافیایی (جی‌آی‌اس) در خدمات کتابداری و اطلاع‌رسانی. کتاب ماه کلیات،13 (7)، 38-41.
درودی، فریبرز؛ محمدعلی‌پور، نرگس (1392). نقش مصورسازی در فرایند بازیابی اطلاعات. مطالعات ملی کتابداری و سازماندهی اطلاعات، 24 (4)، 154-173.
درودی، فریبرز؛ سلیمانی‌نژاد، عادل (1392). دیداری کردن نتایج جست‌وجو در فرایند بازیابی اطلاعات.  تحقیقات اطلاع‌رسانی و کتابخانه های عمومی، 75 (2)، 583-607.
ستوده، هاجر؛ هنرجویان، زهره (1391). مروری بر دشواری‌های زبان فارسی در محیط دیجیتال و تآثیرات آنها بر اثر بخشی پردازش خودکار. کتابداری و اطلاع‌رسانی، 15 (4)، 59-92
صدیقی، مهری (1383). بررﺳﻲ ﻛﺎﺭﺑﺮﺩ ﺳﻴﺴﺘﻢ ﺍﻃﻼﻋﺎﺕ ﺟﻐﺮﺍﻓﻴﺎﻳﻲ (ﺟﻲﺁﻱﺍﺱ) ﺩﺭ ﺳﺎﻣﺎﻧﺪﻫﻲ ﻣﺪﺍﺭﻙ ﻋﻠﻮﻡ ﺯﻣﻴﻦ ﻣﻮﺟﻮﺩ ﺩﺭ ﻣﺮﻛﺰ ﺍﻃﻼﻋﺎﺕ ﻭ ﻣﺪﺍﺭﻙ ﻋﻠﻤﻲ ﺍﻳﺮﺍﻥ. علوم اطلاع‌رسانی، 20 (1و 2)، 29-49.
صنعت‌جو، اعظم (1391). عملکرد هستی‌شناسی‌ها در نظام‌های بازیابی اطلاعات. کتاب ماه کلیات، 17 (6)، 43-47.
کاظم‌پور، زهرا؛ فهیم‌نیا، فاطمه (1391). وزن‌دهی به اصطلاحات و نقش آن در بازیابی اطلاعات.نظام‌ها و خدمات اطلاعاتی، 1 (4)، 95-104.
فیروزی، محمدعلی؛ سجادیان، ناهید؛ و سجادیان، مهیار (1390). سیستم پشتیبانی تصمیم‌گیری فضایی مدیریت ریسک بحران‌های طبیعی در روستاها با بهره گیری از جی.آی.اس، گامی در راستای توسعه پایدار: مطالعه موردی روستاهای استان مازندران. روستا و توسعه، 54 (2)، 93-115.
پورنقی، رویا (1392). مدیریت مجموعه منابع کتابخانه با استفاده از سیستم اطلاعات مکانی (مطالعه موردی: کتابخانه مرکزی و مرکز اسناد دانشگاه تهران). فصلنامه کتابداری و اطلاع‌رسانی، 47 (3)، 251-272.
مظفری، سعید؛ اروجی، علی‌اصغر؛ و مرادی، محی‌الدین (1392). آشکارسازی و تعیین مکان متون فارسی - عربی در تصاویر ویدیویی. دوفصلنامه پردازش علائم و داده‌ها، 10(2)، 87-104.
Abresch, J. (Ed.). (2008).Integrating geographic information systems into library services: A guide for academic libraries. Hershey: IGI Global.
Andreasen, T., Nilsson, J. F., & Thomsen, H. E. (2001).Ontology-based querying. Physica-Verlag HD. Retrieved July 04, 2015, from http://ceur-ws.org/Vol-71/Andreasen.pdf
Asadi, S., Chang, C. Y., Zhou, X., & Diederich, J. (2005).Searching the world wide web for local services and facilities: A review on the patterns of location-based queries. InAdvances in web-age information management (pp. 91-101).Springer Berlin Heidelberg.
Asadi, S., Xu, J., Shi, Y., Diederich, J., & Zhou, X. (2006).Calculation of target locations for web resources.In Web information systems–WISE 2006 (pp. 277-288).Springer Berlin Heidelberg.
Asadi, S., Yang, G., Zhou, X., Shi, Y., Zhai, B., & Jiang, W. W. R. (2008).Pattern-based extraction of addresses from web page content.In Progress in WWW Research and Development (pp. 407-418).Springer Berlin Heidelberg.
Asadi, S., Zhou, X., & Yang, G. (2009).Using local popularity of web resources for geo-ranking of search engine results. World Wide Web12(2), 149-170.
Asadi, S., Zhou, X., Jamali, H., & Mofrad, H. (2007). Location-based search engines tasks and capabilities: a comparative study. Webology4(4).Retrieved July 10, 2015, from http://www.webology.org/2007/v4n4/a48.html
Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (Vol. 463).New York: ACM press.
Bhogal, J., Macfarlane, A., & Smith, P. (2007). A review of ontology based query expansion. Information processing & management43(4), 866-886.
Borges, K. A. (2006). Use of an ontology of urban places for recognition and extraction of geospatial evidences on the web. Unpublished doctoral dissertation, Belo Horizonte (MG), Brazil, Federal University of Minas Gerais.
Borges, K. A., Laender, A. H., Medeiros, C. B., & Davis Jr, C. A. (2007). Discovering geographic locations in web pages using urban addresses. In Proceedings of the 4th ACM workshop on Geographical information retrieval,  November 09-09, (pp. 31-36). ACMNew York, NY, USA.

Can, L., Qian, Z., Xiaofeng, M., & Wenyin, L. (2005, April). Postal address detection fromweb documents.In Web Information Retrieval and Integration, 2005.WIRI'05. Proceedings International Workshop on Challenges in Web Information Retrieval and Integration (pp. 40-45). IEEE Washington, DC, USA.

Clough, P., & Sanderson, M. (2004).A proposal for comparative evaluation of automatic annotation for geo-referenced documents.In proceedings of Workshop on Geographic Information Retrieval SIGIR.Sheffield.Retrieved July 01, 2015,from http://www.geo.uzh.ch/~rsp/gir/abstracts/clough.pdf
De Andrade, F. G., de Souza Baptista, C., & Schiel, U. (2012). A Temporal Search Engine to Improve Geographic Data Retrieval in Spatial Data Infrastructures.In ICEISProceedings of the 14th International Conference on Enterprise Information Systems,Volume 1. Wroclaw, Poland, 28 June - 1 July, (pp. 56-65). SciTePress.
Dietterich, T. G. (2002). Machine learning for sequential data: A review. InStructural, syntactic, and statistical pattern recognition (pp. 15-30). Springer Berlin Heidelberg.
Egenhofer, M., & Kuhn, W. (1999).Interacting with geographic information systems.In  Geographicalinformation systems: principles, techniques, applications, and management (pp. 401-412). D. Rhind, Wiley: New York,.
Freitag, D. (1998). Information extraction from HTML: Application of a general machine learning approach. InAAAI/IAAIProceedings of the Fifteenth National Conference on Artificial Intelligence, Madison, Wisconsin, July 26–30, (pp. 517-523). California: AAAI Press.
Hearst, M. A. (1992, August). Automaticacquisition of hyponyms from large text corpora. InProceedings of the 14th conference on Computational linguistics Nantes, France,August 23-28, 1992 (pp. 539-545). Association for Computational Linguistics.
Holmes, D. O. (1990).Computers and geographic information access.Meridian,4, 37-49.
Jones, C. B., Alani, H., & Tudhope, D. (2001).Geographical information retrieval with ontologies of place.InSpatial information theory(pp. 322-335).Springer Berlin Heidelberg.
Kazama, K. (2012). Distribution pattern analysis of associated geographical names on transportation Network. Transactions of the Japanese Society for Artificial Intelligence27, 34-39.
Kitayama, D., Matsuo, J., & Sumiya, K. (2013). Extracting relations among search properties based on the operational context of geographical information retrieval systems. In Database Systems for Advanced Applications(pp. 179-192).Springer Berlin Heidelberg.
Knappe, R., Bulskov, H., & Andreasen, T. (2007).Perspectives on ontology-based querying.International Journal of Intelligent Systems, 22(7), 739-761.
Kumar, C. (2011). Relevance and ranking in geographic information retrieval. In Proceedings of the Fourth BCS-IRSG conference on future directions in information access, Koblenz, Germany, August 31, (pp. 2-7). UK: British Computer Society.
Lee, R., Wakamiya, S., & Sumiya, K. (2011).Discovery of unusual regional social activities using geo-tagged microblogs. World Wide Web, 14(4), 321-349.
Loglisci, C., Ienco, D., Roche, M., Teisseire, M., & Malerba, D. (2012).An unsupervised framework for topological relations extraction from geographic documents.InDatabase and expert systems applications (pp. 48-55).Springer Berlin Heidelberg.
MacEachren, A. M. (2001). An evolving cognitive-semiotic approach to geographic visualization and knowledge construction.Information Design Journal, 10(1), 26-36.
Martins, B., Silva, M. J., & Chaves, M. S. (2005). Challenges and resources for evaluating geographical IR. In Proceedings of the 2005 workshop on Geographic information retrieval, Bremen, Germany, October 31 - November 05, (pp. 65-69). New York: ACM.
Mata, F., & Claramunt, C. (2011). GeoST: Geographic, thematic and temporal information retrieval from heterogeneous web data sources. In Web and Wireless Geographical Information Systems (pp. 5-20). Springer Berlin Heidelberg.
McCurley, K. S. (2001, April). Geospatial mapping and navigation of the web.InProceedings of the 10th international conference on World Wide Web (pp. 221-229).ACM.
Midaoui, O. E., Qadi, A. E., Rahmani, M. D., & Aboutajdine, D. (2015).A new approach to build a geographical taxonomy of adjacency automatically using the latent semantic indexing method. In Intelligent Systems and Computer Vision (ISCV), (pp. 1-6). IEEE.
Mikheev, A., Moens, M., & Grover, C. (1999).Named entity recognition without gazetteers. In Proceedings of the ninth conference on European chapter of the Association for Computational Linguistics, Bergen, Norway, June 08-12,(pp. 1-8). Stroudsburg: Association for Computational Linguistics.
Muslea, I. (1999). Extraction patterns for information extraction tasks: A survey. In The AAAI-99 Workshop on Machine Learning for Information Extraction, Orlando, Florida, July 19. Retrieved July 15, 2015, from http://www.isi.edu/info-agents/RISE/ML4IE/ml4ie.muslea.ps
Nagabhushan, P., Angadi, S. A., & Anami, B. S. (2006).A fuzzy symbolic inference system for postal address component extraction and labelling. InFuzzy Systems and Knowledge Discovery (pp. 937-946). Springer Berlin Heidelberg.
Perea-Ortega, J. M., Lloret, E., Ureña-López, L. A., & Palomar, M. (2013).Application of Text Summarization techniques to the Geographical Information Retrieval task.Expert Systems with Applications40(8), 2966-2974.
Petasis, G., Cucchiarelli, A., Velardi, P., Paliouras, G., Karkaletsis, V., & Spyropoulos, C. D. (2000).Automatic adaptation of Proper Noun Dictionaries through cooperation of machine learning and probabilistic methods.In Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, Athens, Greece, July 24-28, (pp. 128-135). New York: ACM.
Purves, R., Clough, P., & Joho, H. (2005).Identifying imprecise regions for geographic information retrieval using the web. InProceedings of the 13th Annual GIS Research UK Conference (pp. 313-18)Glasgow: University of Glasgow. Retrieved July 25, 2015, from http://ir.shef.ac.uk/cloughie/papers/gisuk05.pdf.
Sanderson, M., & Kohler, J. (2004).Analyzing geographic queries.In SIGIR Workshop on Geographic Information Retrieval.Ritrieved  December 22, 2014, from: http://www.geo.uzh.ch/~rsp/gir/abstracts/sanderson.pdf (accessed).
Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region.Economic geography,46, 234-240.
Uryupina, O. (2003). Semi-supervised learning of geographical gazetteers from the internet. In Proceedingsof the HLT-NAACL 2003 workshop on Analysis of geographic referencesEdmonton, Alberta, May 31, (pp. 18-25). Stroudsburg: Association for Computational Linguistics. Ritrieved December 25, 2014, from http://delivery.acm.org/10.1145/1120000/1119397/p18-uryupina.pdf?ip=194.225.91.24&id=1119397&acc=OPEN&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E6D218144511F3437&CFID=696778619&CFTOKEN=26626363&__acm__=1479917663_e26515b40095a24c92dba564eaade09c
Vidyarthi, V., Yadav, A., &Yadav, D. (2013).New methodology in GIR systems: Improving web document searching. In Sixth International Conference on Contemporary Computing, Noida, India, August 8-10, (pp. 208-2012).IEEE.
CAPTCHA Image