سنجش رتبه‌بندی سامانه‌های پیشنهاددهندۀ مقاله در تقابل با رتبه‌بندی کاربران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد علم اطلاعات و دانش‌شناسی، دانشگاه شیراز

2 استادیار گروه علم اطلاعات و دانش‌شناسی، دانشگاه شیراز

چکیده

هدف: سامانه‌های پیشنهاددهنده مقاله‌های علمی در تلاش‌اند به‌جای الزام کاربر به اصلاح راهبرد جستجو و فرمول‌بندی واژگان پرسش، الگوریتم‌ها و رویکردهای مناسب را برای عرضه مرتبط‌ترین مدارک به‌کار گیرند. علاوه بر ربط، رتبه‌بندی مدارک بازیابی‌شده نیز می‌تواند رضایت کاربران را تضمین کند. این مقاله نتیجه تحلیل رتبه‌ مقاله‌ها را در سامانه‌های پیشنهاددهنده پایگاه وب‌آوساینس و موتور جستجوی گوگل‌اسکالر از دیدگاه کاربران و سنجه (NDCG) Normalized Discounted Cumulative Gain گزارش می‌کند.
روش‌شناسی: از 120 دانشجوی داوطلب دکترای دانشگاه شیراز در رشته‌های علوم انسانی، علوم پایه، فنی-مهندسی، کشاورزی، و دام‌پزشکی (از هریک ۳۰ نفر) خواسته شد 2400 مقاله (1200 مقاله پیشنهادی گوگل‌اسکالر و 1200 مقاله پایگاه وب‌آو‌ساینس) را به‌لحاظ ربط، رتبه‌بندی کنند. داده‌ها با پرسشنامه و نرم‌افزار پژوهشگرساخته گردآوری شد.
یافته‌ها: میان رتبه‌ انتسابی کاربران و رتبه انتسابی پایگاه شباهت ضعیف بود. شباهت رتبه‌بندی مقالات در سامانه‌های هر دو پایگاه نیز ضعیف، اما معنادار بود.الگوریتم‌ها و شاخص‌های سامانه‌های پیشنهاددهنده هر دو پایگاه برای رتبه‌بندی چندان موفق نیست و نیاز به بازنگری دارد.
نتیجه‌گیری: الگوریتم‌ها و شاخص‌هایی که سامانه پیشنهاددهنده دو پایگاه برای رتبه‌بندی مقاله‌های مرتبط پیشنهادی درنظر گرفته‌اند، در تأمین رضایت کاربران زیاد موفق نبوده است؛ بنابراین بازنگری در الگوریتم‌های رتبه‌بندی این دو پایگاه ضروری به‌نظر می‌رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Article Ranking by Recommender Systems vs. Users’ Perspectives

نویسندگان [English]

  • S. sadein 1
  • J. Abbaspour 2
1 MA, Knowledge and Information Science, Shiraz University
2 Assistant Professor, Knowledge and Information Science, Shiraz University
چکیده [English]

Purpose: To compare the rankings of articles by Google Scholar and Web of Science recommender systems against users’ perspectives.
Methodology: 120 PhD candidates of Shiraz University in the fields of humanities, sciences, engineering and agriculture, (30 from each field) voluntarily participated in the study. They were asked to introduce three articles had recently read for their thesis. One of the three which was indexed by both databases was chosen and named as the core article. For each core article 10 recommended articles recommended by each recommender system were retrieved (2,400 overall). Using imitating software exclusively designed for this study, participants were asked to rank the articles retrieved by the two recommender systems for their core articles. Normalized Discounted Cumulative Gain (NDCG) measure was employed for analysis.
Findings: There was a noticeable but weak relationship between the users’ assigned rankings and the rankings of Google Scholar and Web of Science databases. Correlation between the rankings of both databases with NDCG measure was also weak.
Conclusion: The algorithms used for ranking by both recommender systems hardly in matched that of the users. Therefore, ranking algorithms of both databases may need some revision.

کلیدواژه‌ها [English]

  • Documents’ ranking
  • Research paper recommender systems
  • NDCG measure
  • Information retrieval
  • Google Scholar
  • Web of Science
آتشکار، مرضیه؛ علیپورحافظی، مهدی؛ و نوروزی، یعقوب (۱۳۹۲). شناسایی میزان آشنایی دانشجویان تحصیلات تکمیلی با پایگاه‌های گوگل‌اسکالر. نظام‌ها و خدمات اطلاعاتی، ۹ (۱)، 61-78.
دلاور، علی (1396). روش تحقیق در روانشناسی و علوم تربیتی (ویرایش 4). تهران: ویرایش.
ره‌گشای، مرتضی (1390). مطالعه ابرموتورهای جستجو در پاسخ‌گویی به سؤالات کاربران کتابداری و اطلاع‌رسانی و ارایه الگوی پیشنهادی جهت بهبود رتبه‌بندی نتایج جستجو. پایان‌نامه کارشناسی ارشد، دانشگاه پیام نور، مشهد.
ریاحی‌نیا، نصرت؛ رحیمی، فروغ، لطیفی، معصومه؛ و بخشیان، لیلی‌الله. (۱۳۹۴). بررسی میزان انطباق ربط سیستمی و ربط کاربرمدارانه در پایگاه‌های اطلاعاتی SID- ISC – Google Scholar. تعامل انسان و اطلاعات، 2 (1)، 1-11.
سعدین، صبا؛ عباس‌پور، جواد؛ و ستوده، هاجر (زودآیند). مقایسه اثربخشی سامانه‌های پیشنهاددهنده مقاله‌های مرتبط در پایگاه‌های وب‌آوساینس و گوگل‌اسکالر. تحقیقات کتابداری و اطلاع‌رسانی دانشگاهی.
فرهودی، فائزه؛ حریری، نجلا (۱۳۹2). تأثیر ویژگی‌های شخصیتی کاربران بر قضاوت ربط. پردازش و مدیریت اطلاعات، ۲۹ (۲)، 317-331.
Al-Maskari, A., Sanderson, M., & Clough, P. (2007). The relationship between IR effectiveness measures and user satisfaction. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 23-27, (pp. 773-774). Retrived October 30, 2019, from http://www.marksanderson.org/publications/my_papers/SIGIR2007-b.pdf.
Bar‐Ilan, J., Keenoy, K., Levene, M., & Yaari, E. (2009). Presentation bias is significant in determining user preference for search results—A user study. Journal of the American Society for Information Science and Technology, 60 (1), 135-149.
Bar‐Ilan, J., Keenoy, K., Yaari, E., & Levene, M. (2007). User rankings of search engine results. Journal of the American Society for Information Science and Technology, 58 (9), 1254-1266.
Bar-Ilan, J., Levene, M., & Mat-Hassan, M. (2006). Methods for evaluating dynamic changes in search engine rankings: a case study. Journal of Documentation, 62 (6), 708-729.
Beel, J., & Gipp, B. (2009). Google scholar's ranking algorithm: The impact of articles' age (an empirical study). In S. Latifi (Ed.), Proceedings of the 6th International Conference on Information Technology: New Generations, April 27-29, (pp. 160-164). IEEE. Retrieved October 30, 2019, from https://ieeexplore.ieee.org/document/5070610
Beg, M. S. (2005). A subjective measure of web search quality. Information Sciences169 (3-4), 365-381.
Char, D. C., & Ajiferuke, I. (2013, October). Comparison of the effectiveness of related functions in Web of Science and Scopus. In Proceedings of the Annual Conference of CAIS/Actes du Congrès Annuel de l'ACSI. Retrieved October 30, 2019, from http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=12BDD2E4D8D78A777A4BCDD5E8FD38B1?doi=10.1.1.181.382&rep=rep1&type=pdf
Drori, O. (2002). Algorithm for documents ranking: Idea and simulation results. In Proceedings of the 14th international conference on Software Engineering and Knowledge Engineering, July 15-19, (pp. 99-102). New York, NY: ACM.
Eto, M. (2013). Evaluations of context-based co-citation searching. Scientometrics, 94 (2), 651-673.
Hariri, N. (2011). Relevance ranking on Google: Are top ranked results really considered more relevant by the users? Online Information Review35 (4), 598-610.
Jansen, B. J., Spink, A., & Saracevic, T. (2000). Real life, real users, and real needs: a study and analysis of user queries on the web. Information Processing & Management36 (2), 207-227.
Joachims, T., Granka, L., Pan, B., Hembrooke, H., & Gay, G. (2005). Accurately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, August 15-19, (pp. 154-161). New York, NY: ACM.
Kekäläinen, J. (2005). Binary and graded relevance in IR evaluations—comparison of the effects on ranking of IR systems. Information processing & management, 41 (5), 1019-1033.
Kinley, K., Tjondronegoro, D., Partridge, H., & Edwards, S. (2014). Modeling users' web search behavior and their cognitive styles. Journal of the Association for Information Science and Technology65 (6), 1107-1123.
Lewandowski, D. (2008). The retrieval effectiveness of web search engines: considering results descriptions. Journal of Documentation, 64 (6), 915-937.
Lingeman, J. M., & Yu, H. (2016). Learning to Rank Scientific Documents from the Crowd. arXiv preprint arXiv:1611.01400. Retrieved October 30, 2019, from https://arxiv.org/pdf/1611.01400.pdf
Martín-Martín, A., Orduña-Malea, E., Ayllón, J. M., & López-Cózar, E. D. (2014). Does Google Scholar contain all highly cited documents (1950-2013)? Retrieved October 30, 2019, from https://arxiv.org/ftp/arxiv/papers/1410/1410.8464.pdf
Nowicki, S. (2003). Student vs. search engine: Undergraduates rank results for relevance. Portal: Libraries and the Academy, 3 (3), 503-515.
Patil, S., Alpert, S. R., Karat, J., & Wolf, C. (2005,). “THAT’s what i was looking for”: Comparing user-rated relevance with search engine rankings. In IFIP Conference on Human-Computer Interaction, September 12-16, (pp. 117-129). Berlin, Heidelberg: Springer.
Sakai, T. (2007, May). On Penalising Late Arrival of Relevant Documents in Information Retrieval Evaluation with Graded Relevance. In The First International Workshop on Evaluating Information Access (EVIA), May 15, (pp. 32-43). Retrieved October 30, 2019, from http://research.nii.ac.jp/ntcir/ntcir-ws6/OnlineProceedings/EVIA_Preprint_Papers/1.pdf
Sanderson, M., Paramita, M. L., Clough, P., & Kanoulas, E. (2010, July). Do user preferences and evaluation measures line up? In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, (pp. 555-562). Retrieved October 30, 2019, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.9251&rep=rep1&type=pdf
Su, L. T. (2003). A comprehensive and systematic model of user evaluation of Web search engines: II. An evaluation by undergraduates. Journal of the American Society for Information Science and Technology54 (13), 1193-1223.
Teevan, J., Dumais, S. T., & Horvitz, E. (2005). Personalizing search via automated analysis of interests and activities. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, August 15-19, (pp. 449-456). New York, NY: ACM.
Vallez, M., & Pedraza-Jimenez, R. (2007). Natural language processing in textual information retrieval and related topics. Hypertext.net, 5. Retrieved October 30, 2019, from https://www.upf.edu/hipertextnet/en/numero-5/pln.html
Wang, Y., Wang, L., Li, Y., He, D., & Liu, T. Y. (2013, June). A theoretical analysis of NDCG type ranking measures. In Conference on Learning Theory, June 12-14, (pp. 25-54). Retrieved October 30, 2019, from http://proceedings.mlr.press/v30/Wang13.pdf
Yoon, S. H., Kim, S. W., Kim, J. S., & Hwang, W. S. (2011). On computing text-based similarity in scientific literature. In Proceedings of the 20th International Conference Companion on World Wide Web, March 28 - April 1, (pp. 169-170). New York, NY: ACM.
CAPTCHA Image